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PREFACE.

present volume is an attempt at a simple presentation
J- of one of the most recent branches of mathematical science.

It has involved an amount of labour which would seem to the

average reader quite out of proportion to the size of the book ;

yet I can scarcely hope that the mode of presentation will appeal

equally to all mathematicians. There arc no definitely accepted
landmarks in the didactic treatment of Georg Cantor's magnificent

theory, which is the subject of the present volume. A few of the

most modern books on the Theory of Functions devote some pages
to the establishment of certain results belonging to our subject,

and required for the special purposes in hand. There is moreover

in existence the first half of Schoenflies's useful Benefit uber die

Mengenlehre. The philosophical point of view is discussed to

some extent in Russell's Principles of Mathematics. But we

may fairly claim that the present work is the first attempt at

a systematic exposition of the subject as a whole.

The difficulties in arrangement which this fact suggests have

been enhanced by the nature of the subject itself and by the

tentative character of some of its results. The writing of the

book has necessarily involved attempts to extend the frontier of

existing knowledge, and to fill in gaps which broke the connexion

between isolated parts of the subject. The references in the text

which do not give the name of the author always refer to my own

papers: in this connexion, however, I should like to pojnt out

that the citations in the text are not to be regarded as "by any
means complete, and are supplemented by the list of literature at

the end of the volume.

On the other hand, imperfect though the book is felt to be, it

is hoped that it may prove of use to a somewhat large class of

readers. As far as the professional mathematician is concerned,

it may be confidently asserted that a grasp of the Theory of

Sets of Points is indispensable. Wherever he has to deal and

where does he not ? with an infinite number of operations, he is

I



Vi PREFACE

treading on ground full of pitfalls, one or more of which may well

prove fatal to him, if he is unprovided by the clue to furnish

which is the object of the present volume.

In subjects as wide apart, as Projcctive Ccomctry, Theory of

Functions of a Complex Variable, the Expansions of Astronomy,

Calculus of Variations, Differential Equations, mistakes have in

fact been made by mathematicians of standing, which even a

slender grasp of the Theory of Sets of Points would have enabled

them to avoid. It can scarcely be doubted that the near future

will sec a marked influence exerted by our theory on fche language

and conceptions of Applied Mathematics and Physics. To the

philosophical reader on the other hand and to the general public

with mathematical interests the subject presents the advantage,

as compared with other of the more recent developments of

mathematical science, that it is less technical and requires a

smaller mathematical equipment than most of them.

I should like to take this opportunity of acknowledging rny

indebtedness to Professor Vivanti of Messina, who has most

carefully read all the proof-sheets, and considered various points

submitted to him
;
his help and criticism have throughout been

invaluable. Dr Felix Bernstein of Halle has also been so good as

to read the proof-sheets of the first eight chapters with especial

reference to the arithmetical portions of the subject. Mr Philip

Jourdain, who read Chapters VI and VII, and also looked through
the earlier proof-sheets, and Professor Oswald Veblen of Princeton,

who undertook Chapters IX and X, have also been of the greatest

help with criticisms and suggestions. Any reference to the constant

assistance which I have received during my work from my wife is

superfluous, since, with the consent of the Syndics of the Press,

her name has beer, associated with mine on the title-page.

In spite, however, of the greatest care to avoid error, clerical

or otherwise, mistakes are sure to have escaped notice. The
reader is recommended not to overlook the Appendix, in which

some mistakes, discovered too late for correction, and some points

in the text which seenaed to require elucidation are discussed.

W. H. YOUNG.

HESWALL.

May, 1906.
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CHAPTER I.

RATIONAL AND IRRATIONAL NUMBERS.

1. Introductory. The student is supposed to be familiar

with the ordinary theory of the natural numbers, 1, 2,..., and its

extension to the fractional and negative numbers, , $, f, ...,

1, i, .... Both classes are grouped together under the name of

rational numbers. He is also supposed to have some acquaintance
with the theory of irrational numbers. This latter theory occu-

pies, however, a fundamental position in our present subject, and
we propose to give a short account of it, sufficient for the purposes
in hand.

2. Sets and Sequences. Any number of rational numbers,

individually given, are said to form a finite set. For instance,

1, i i f, 2, 3.

In this case, each being given singly, they must have a definite

succession, and are said to have an order.

If numbers are given, not individually, but by means of some

law, they are said to form a set, which is a finite set, if they can

from the law be individually determined and assigned, without

any numbers of the set being omitted
;
in the contrary case, they

are said to form an infinite set, and to be infinite in number (more

precisely, in cardinal number). If the law be such that from it

the numbers are determined in a definite succession, one by orte,

the numbers are said to have an order.

Thus all the integers between and 15 form a finite set,

without order. The same integers in order of magnitude form a

finite set in order, which is generally referred to as the natural

order.. All the rational numbers between and 15 form an infinite

set without order, and in order of magnitude they have an order,

the natural order. All numbers satisfying the relation

where Wi

form an infinite set in order.

Y.



RATIONAL AND IRRATIONAL NUMBERS [CH. I

A set in order is also called a series.

An infinite number or series of rational * numbers

is said to form a sequence, if, given any small positive quantity e,

a number a of the series can always be assigned, such that, if Op and

aq be any numbers of the series subsequent to aw ,

\af-at \<t.
The individual numbers a, , a, are called the constituents of the

sequence.

Thus, the numbers

1 ? 7 15 31 /
2 M / J_X

'

2' 4' 8
'

16'
' '

V 2"1
/' V 2"+*)'"

for all integral values of m, form a sequence.
A series of rational numbers which constantly increase, or

which constantly decrease, always defines a sequence, provided a

finite number exists which in the former case -is always greater,

and in the latter case is always less than any number of the series.

Ex. 1, 1 + 1, 1 + 1+^p 1 + 1
+^l + 3l+--

It may now happen that the sequence is such that a rational

number 6 exists, to which the a's continually approximate to a

degree closer than any assigned quantity. More precisely it may
be such that, given any small positive quantity e, a number aw of

the series can always be assigned, such that ar being any number
of the series subsequent to On,

|

b Of |

< e.

The sequence is then said to define the number 6, which is

clearly unique. Thus the number 2 is defined by the sequence (1 ).

It is evident that the same number b may be defined by

sequences whose constituent numbers differ from one another.

Thus each of the sequences

2
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3. Irrational numbers. The two most ready ways of
setting

up a sequence are :

(1) by means of the terminating decimal fractions vhich are
the successive approximations to a non-terminating decimal fraction

(or traction expressed in some other scale), and

(2) by means of the successive convergents to a non-termi-

nating
"
simple

"
continued fraction*.

The first of these forms a sequence since the constituent
numbers continually increase and remain less than an assignable
number: that the second forms a sequence follows from the known

properties of continued fractions.

Since a rational number can be expressed in one, and only
one, way (1) as a non-terminating decimal fraction, namely as a

recurring decimal, and (2) as a simple continued fraction, namely
a terminating one, it follows that a sequence set up in mode (1)

does not define a rational number unless the decimal fraction

recurs, and that (2) never defines a rational number.

In accordance with the usual law which holds in all extension

of mathematical reasoning, it is convenient still to use the word

number when speaking of a sequence which does not define a

ratienal number. The new numbers thus obtained are called

irrational numbers
;
for instance the series of decimal fractions

1, 12, -123, -1235, -12357, -1235711, -123571113, ......

where each is got from the last by appending the next prime
number after the last appended, and the series of convergents

i.M.ii.ftif .-
to the continued fraction

are said to define irrational numbers.

4. Magnitude and Equality. In 2 we stated that two

sequences which defined the same rational number might be

regarded as equal. We now give a definition of the equality of two

sequences which applies when the two sequences do not define

rational numbers : this definition will include the preceding as a

particular case.

* That is to say a continued fraction of the form

0,+ a
a +

-

whcxc the as are positive integers ; ChrystaTa Algebra, Vol. n. p. 997.

12
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The definition is as follows :

Two sequences a,, a,, . .....

61,6,, ......

are said to be equal, when, given any small positive quantity e,

however jmall, an integer m can be found such that, for all values

of n>m,
\an -bn \<.

We may put this definition in an apparently more general, but

actually equivalent^ form. The two sequences^are said to be equal,

when, choosing out from each a partial sequence,

these partial sequences satisfy the above condition of equality.

That this definition is equivalent to" the former is evident from

che fact that the a's and b's form sequences.

Taking any two sequences at random, and forming any partial

sequences from them as above, it is easily proved that the quantities

form a sequence, and that all sequences so formed by means of

partial sequences from two given sequences are equal. The

number defined by any one of these sequences is called the excess

of the number a, defined by the a-sequence, over the number b,

defined by the 6-sequence, and when taken positively is called the

difference of a and 6.

If the sequences be equal, the difference will be zero; otherwise

the excess will be positive or negative, and the number a is, in the

former case, said to be greater than -the number b,a>b, and, in

the- latter case, a is said to be less than 6, a < b.

An irrational number is said to be positive or negative, ac-

cording as it is greater or less than 0.

It is evident that, (1) if a > b, b<a, and that, (2) if a > b and

&>c, tt>c; finally that every number a is either greater than,

equal to or less than any given number J>. These facts are

gammed up by saying that numbers may be compared as to

magnitude.
It is now easily seen that the rational numbers

form a sequence, whose magnitude is independent of the choice of

the partial sequences. The number defined by any one of these

sequences is called the swn of the two numbers a and b.
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Similarly, a/&/, a,' &,',

and, if the b-sequence do not define the number 0,

a/ aj
61 t !/

i 0,

form sequences, whose magnitude is independent of the choice of

the partial sequences. The former of these is said to define the

product, and the latter the quotient of a and b.

Hence it follows that we can attach a definite meaning to the

symbol R(a,b,... &), where R is a rational function of the finite

set of irrational numbers a, b,...k, provided that., in the process of

calculating It by approximation, no quotient occurs whose value

is, actually or in the limit, zero.

In particular, since the difference of two irrational numbers is

now clearly defined, we can, in the definition of a sequence in 2,

insert the words "
or irrational

"
after

"
rational," and so obtain

a general definition of sequence, independent, not only of the fact

whether or no the number defined be rational or not, but also of

the rationality or irrationality of the constituents themselves.

5. The number x. We have now attached a definite

number to every sequence of numbers, rational or irrational,

and we saw that if

On a2,...

be a given sequence, then, provided that ar does not become less

in absolute magnitude than any assigned number,

I 1
oi' a,""

is also a sequence. Also

forms a sequence defining the number 1, so that, by our definitions,

the product of the two former numbers is unity ;
we therefore

denote them by a and -
,
and say that they are the inverses of

one another.

We shall now add another number to our list of numbers,

and so remove the last restriction as to the nature of the given

sequence. If the a's become less in absolute magnitude than

any assigned number, the constituents of the inverse series

become greater in absolute magnitude than any assigned number,

and do not form a sequence as we have defined it. In other words,

the number is the only number which at present has no inverse.

We now introduce the pumber oo as the inverse of 0. That is to
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say, given a series ofnumbers which become and remain greater in

absolute magnitude than any assigned number, we still regard this

series as a sequence, and introduce the symbol oo (infinity), to denote

the
" number

"
defined by such a sequence.

We see that this agrees so far with the preliminary definition

of the term "
infinite number "

given in 2.

With this, convention we may add that, if in any rational

function R (oo ) the symbol oo occurs, it implies that, taking

any series of numbers c^, a, whose inverses in order define

the number 0, the quantities R (an) form a sequence, and the

number defined by this sequence is that denoted by the symbol

tf(oc).

We, content ourselves for the present with this definition* of

the symbol oo. It will subsequently appear that we have to

specialise our ideas of infinity, or more properly, of infinite

numbers, for purposes which will occur in the later chapters.

6. Limit. The number defined by a sequence is said to be

the limit of the constituent an of the sequence, when n is .infinite.

It appears from what has been said, that if R (a, b, ... k) be any
rational function of the finite set of numbers a,b,...k (rational

or irrational), then, provided the limit of R (an , bn; ...) be definite,

R(a, b, ...k) may be defined as the limit of R(an, bn>,i...) when

n, n'
t ... are* infinite, and will be a number, rational or irrational.

With the above restriction, then, the rational and irrational

numbers form what is called a "
corpusf."

7. Algebraic and transcendental numbers. An important
class of numbers is that of the algebraic numbers. These are-

distinguished among themselves as to rank. An algebraic number

of rank m is defined as a number satisfying an irreducible equation

of degree m, with rational coefficients, and satisfying no such equation

of degree less than m.

A rational number satisfies such an equation of degree 1, and

any algebraic number which satisfies an algebraic equation of degree
1 is rational

;
thus the algebraic numbers of rank 1 are identical

with the rational numbers, and all algebraic numbers of rank higher
than 1 are irrational. Methods of obtaining all algebraic numbers,
i.e. of obtaining sequences defining them, are given in all works on

the Theory of Equations.

It should be noticed that in this system of fixed numbers there is no place for

the symbols + oo and - CD any more than for + and -
; see however 15.

t A corpus is a collection of objects which reproduce themselves when subjected
to the simple rales of arithmetic.
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AH irrational numbers which are not algebraic are classed

together as- transcendental.

It is in general a most difficult problem to determine in any
special

case whether a given number be rational, algebraic or

transcendental. No general method and no set of necessary and

sufficient conditions have at present been discovered. There are

however a few isolated theorems on the subject, among which the

following is one of the most important; it enables us to write down

sequences defining numbers of the last of the above classes.

Liouville's Theorem. If, ,
... be a sequence of rational

Q.I 9*

fractions in their lowest terms, defining an algebraic number b of
an

rank m, then, for every constituent - from and after an assignable

stage, we have

To prove this theorem, let the eolation of degree m satisfied

by b be

f(x) = a xm + o^x-1 + . . . + am = 0,
in

where the a's are integers; and let - be any rational number

within a certain small interval containing 6, that is to say, such

that the difference between that number and & is less than a

certain small positive quantity.

Then

therefore,

where y is a certain number, possibly irrational, lying between

- and 6
;
and f is the first derived of f.

Now it is obviously possible to assign a finite number M,

greater than any value of \f (y) |,
when y lies within the given

interval. Hence

/{*)J
\Q/

<M

But, f=J
\qJ <T'

where A is some integer ; and, if we choose to assign a sufficiently

small interval, so that /(#) vanishes for no value of x within the

interval except b, A will not be zero, and therefore,

'-6 l
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Js
T
o\v there are only a finite number of rational numbers whose

denominators are less lhan M. Hence, we can determine a second

interval, lying within the former interval, and containing none

of these rational numbers; in this interval for every rational

number --,
9

so that, given any sequence having 6 as limit, we can determine

a stage such that for all subsequent constituents the above in-

equality holds. Q. E. D.

The above property serves to determine whether a given

sequence can represent an algebraic number, or a rational number,

but it does not give a sufficient criterion to determine whether a

given seq.ience actually does represent such a number.

Thus in the case of the sequence of fractions, expressed in the

decimal or any other scale, such that each is got from the pre-

ceding by appending one more figure on the right, we know that

the number h defined can only be rational if the figures ultimately

recur in some cycle. This property is quite independent of the

above, and cannot be proved from the above inequality. All that

we can deduce from the inequality is that, if b be rational, then,

when n is sufficiently large, n successive figures after the nth

figure cannot all be noughts; while, in the more general case,

when b is an algebraic number of rank in, mn successive figures

after the nth cannot all be noughts, n being sufficiently large.

This property serves to define a class of transcendental numbers

discovered by Liouville and called after his name, which were

historically the first numbers to be proved transcendental. These

are the numbers

lo
+
16"

+
iof"

+ fo^+
= 110ooioooooooooooooooooi o . . .,

and the decimal fractions got by replacing any 1 by any other

figure.

Such numbers may of course be constructed in any other scale,

and will still be transcendental.

The best known transcendental, numbers are ir and.e: these do

not belong to the class of Liouville numbers.



CHAPTER II.

REPRESENTATION OF NUMBERS ON THE STRAIGHT LINE.

8. One of the most fundamental properties of the set. of

rational numbers is their order. We shall find in the sequel

that the idea of order is one of the most essential to the under-

standing of sets of points, and that we habitually use the order

of some or all of the rational numbers as a standard of comparison.

The order of the rational numbers as a whole is such that

we cannot say which is the next rational number in order ol

magnitude after any given one a, or before a given one c
; indeed,

if a and c be any two rational numbers, we can always insert

a rational number b between them.

It is of assistance to the imagination that we can set up
a (1, 1^-correspondence between the lationai numbers and certain

points of the straight line, in such A way that the order is

maintained, that is to say if Ap ,
A

q
. A r are three of the points,

corresponding to the rational numbers p, q, r, A
q

lies between

A p and Ar if, and only if, q lies between p and r, and mce versa.

We shall now discuss shortly, how anct under what assumptions
with respect to the nature of the straight line, this correspondence
can be extended to the irrational numbers.

In setting up the (1, 1^correspondence referred to, measure-

ment may be entirely avoided; in this way various difficulties

which have nothing to do with the subject in hand do not come
into the discussion.

The principle of the correspondence which we here choose,

and which is commonly referred to as the protective scale, is that

if a, b, c, d be any four harmonic rational numbers, that is if

/ i j\ a-bc-d ,\
(0| 6, 0>d)s-_ __ = _!,

or, which is the same thing, } (1)

1 1 2
T

b a d a c a'
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the points corresponding to these four rational numbers shall

form a harmonic range.

Now the equation (1) always defines a rational number d,

if a, b, c be rational, unless

26 = a + c
;

in the latter case there is no rational number satisfying the

equation (1); but if d describe any sequence of positive or

negative rational numbers, whose absolute magnitude increases

without limit, (a, ,c,d) approaches the limit 1. Hence
\ * /

in accordance with the meaning attached by us to the symbol oo
,

we shall write

/ a + c \ - /ox

^a,

-
,c,aoj

= -l............. .........(2)

It follows that, p being any positive integer,

(8)

Now we start with any two points P, Q, and any point
between them to which we attach the integer 1, or, as we shall

express this more concisely, we choose this third point as the

point 1. We shall see subsequently that we shall come to attach

the symbols and oo to the points P, Q, in consequence of the

equations (2) and (3).

Outside the line PQ take any point C. Join OP, and on this

line, between C and P, take any point A, and join AQ.
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Construction ofthepositive integral point*. The point 2 we choose

to be the fourth harmonic of P with respect to 1 and Q. We
therefore join 10, and let it meet AQ (of course between A and Q),

in AI. Join PA^ and produce it to meet GQ in Clt forming the

quadrilateral AjlQC^, having P and C as two of its diagonal

points : the third diagonal point A., is obtained as the intersection

of 10! with AQ. Then (M 2 will meet PQ between 1 and Q, thia

point we call the point 2.

The point 3 we construct as the fourth harmonic of 1 with

respect to 2 and Q, precisely as we did the point 2 from P, 1 and

Q. Similarly each successive integral point can be constructed.

It is evident that the integral points so constructed are in

the proper order, and the greater an integer, the nearer the

corresponding point lies to the point Q. It will be shewn, further

on, that in this way the points corresponding to four harmonic

integers are always themselves harmonic, and vice versa.

Construction of the negative integral points. The point m
we now construct as the fourth harmonic of m with respect

to the points P and Q; it can be at once obtained as the

intersection of PQ with ACm ,
where Cm is the second angular

point on CQ of the quadrilateral used in the construction of

the point (m + 1), just as C^ occurred in the construction of the

point 2.

It is evident that these points will again be in the proper

order, the point 1 being nearest to P on the one side, or farthest

from the point Q on the other side, and large negative integers
nearer and nearer to the point Q. Between the positions AC
and AQ or between two definite successive positions ACr , ACr+l ,

the line which is revolving round A becomes parallel to PQ,
so that in the first case the points P and 1, in the second

case the successive integral points r and (r + 1) lie toward

different ends of the straight line PQ. It will therefore be

convenient to think of the whole straight line as closed, and to

make the convention that any point which lies beyond the point
r (or P), on the one side, or beyond the point (r+ 1) (or 1),

on the other side, lies between the points r and (r + 1)

(or P aud -
1).

Construction of the inverse integral points . The point we

choose to be the fourth harmonic of jQ with respect to P and 1
;

it is constructed by joining Al, cutting PA l between P and A l
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at a point which we will call A. CA meets the line PQ between

P and 1, and this is to be the point .

The point J is similarly constructed, by means of an auxiliary

point A^ the intersection of A^ with PC,, as the fourth harmonic

of the point 1 with respect to P and
;
and similarly we can

construct in succession the inverse integral points, the point

being the fourth harmonic of - =- with respect to and -
.

It is again evident from the construction that these points
are in the right order. The inverse integral points lie then all

between P and 1, and are in the reverse order to the integral

points, and they mass themselves in the neighbourhood of the

point P, so that the higher the integer m the nearer to P lies

the inverse integral point .

Construction ofthe general positive or negative rationalfractional

ft 11
point -. The points 1+-, 2+-, can now be constructed

q r T

from P, -, and Q, jost as 2, 3, were from P, 1, and Q; and the

point
*- from P, *- and Q, just as m was from P, m, and Q.

It is then evident that, with our convention as to points at

a great distance, the points which we have constructed lie in the

right order, so that if a number b lies between two numbers a

and c, the point 6 will also lie between the points a and c, and

vice versa.

It remains to shew for completeness, that any four harmonic

points correspond to four harmonic numbers and vice versa.

Now it is evident from our construction :

(1) that if we project our rational points from C on to AQ,
and then project from P on to CQ, finally project from A on to

PQ, we project any point x into the point #;

(2) that if we project from A
l on to AGl} and then from C

on to PQ, we project each point x into its in verse -
, and the

points P and Q are interchanged ;

(3) that if we project from C^ on to AQ, and then from

C on to PQ, we change x into * + 1.
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Now by (3) we can project the four integral points (P, m, 2m, Q)
into (- m, P, m, Q), which was by construction harmonic. Simi-

larly (m, 2m, 3m, Q) is harmonic, and so on. Thus we can

project the harmonic quadruplet (P, m,.2m, Q) on to the harmonic

quadruplet. (P, 1, 2, Q) ; and, when we do this, the point 2w will

be projected to the point 2, and generally the point xm to the

point x, where x is any rational number (4).

By a combination of the projections (1), (2), (3) we -can pro-

ject each point x into the point ,, where a, 6, c, d are any

given -integers.

If we choose o = 0,

d (m I) b,

(I 1 \ ,

a =
, ^ a,

\n l m lj

then, if, and only if, the numbers I, m, n, p are harmonic, the

points (Q, --,, _,, _/) wiM project into the points

(Q, 0, 1, 2), and will therefore be harmonic. In this case by
the projection (2) the points (P, m l,n l,p [), and therefore

by the projection (3) the points (m, I, n, p) are harmonic, so that

every harmonic quadruplet of numbers corresponds to a harmonic

quadruplet of points. Vice versa, if I, m, n, p' be the numbers

corresponding to any four harmonic rational points, and p be the

fourth harmonic number corresponding to m with respect to I and n,

the point p will be the harmonic conjugate of m with respect-

to the points I and n, and will therefore coincide with p'. Thus

we see that our construction is such that to four harmonic

numbers correspond four harmonic points, and vice versa.

Extension of the correspondence to the, irrational points. By
construction there are an infinite number of rational points in

any segment, however small, of the straight line
;
but we cannot

assert that to every point of the straight line there corresponds

a rational number, and indeed with proper assumptions as to the

nature of a straight line, it can be proved that this is not the

case. If, however, we choose any point x, we shall always be able

to construct sequences of rational numbers, such that the corre-

sponding points lie nearer and nearer to x, and always eventually

lie between x and any other assigned point of the straight line,

and these sequences will by definition all define the same number.

This number we attach to the point x, and in this wav every
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point of the straight line has a number attached to it, the

numbers attached to the points P, Q being evidently and

respectively, and the numbers attached to the other points being
rational or irrational numbers such as we have defined their.

The converse of the abpve, namely, that corresponding to

every irrational number such as we have defined, there is one

definite point of the straight line, is incapable of proof, as was

first pointed out by G. Cantor, Math. Ann. V. 1878, p. 128.

The assumption that this is the case, which for the purposes
in hand we shall make, is therefore of the nature of an axiom,

and binds us down in the geometry of linear sets of points to

a definite conception of the straight line, considered as a con-

tinuous geometrical form, which is not a priori necessitated by
the axioms of projective or of Euclidian geometry. This axiom,

which has been assumed by innumerable mathematicians as

self-evident, will be found in the sequel to lead to results so

paradoxical that the student of the theory of sets of linear points

is obliged to confess that the theory of sets of numbers does not

owe more to the geometrical insight of the investigator, than

the geometrical conception of the mutual relations of points on

a straight line owes to the abstract properties of numbers.

The above axiom as to the nature of the straight line, in

whatever form it is stated, is commonly referred to as the Cautor-

Dedekind axiom, having been arrived at, in a slightly different

form, almost simultaneously with Cantor, by Dedekind.

We may now sum up the results of the present article by

saying : the continuum of numbers and the linear continuum can

be brought into (I, ^-correspondence maintaining the order.

If we choose the point Q as the imagined intersection of the

line PQ with any parallel line, the projective scale is identical

with a scale fi^ed by the ordinary principle of measurement, and

for most purposes this will be in future us*d.

9 Interval between two numbers. The first idea which

we shall borrow from the geometry of the straight line is that of

a segment or interval, and these words will sometimes be used with

a slight difference of meaning. By the segment or interval (A,B)
of the straight line is clearly understood the finite part of the

straight line terminated at A and B, that is to say that part so

terminated which does not contain the point oc : and wh^n we

speak of. the segment we shall in general mean that our attention

is fixed only on points contained in that segment, while in
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speaking of the interval (A, B) we shall direct our attention

chiefly to the points A and -B, and possibly to' other points outside

{A, B), but not in general to points inside the interval (A, B), or

only to these in contradistinction to the others.

Having connected numbers a and 6 with A and B, as in 7,

every point of the segment (A, B) will have a number connected

with it lying between a and 6, and conversely ;
while every point

outside the interval (A, B) will have connected with it a number

not lying between a and 6, and conversely. Hence we naturally

consider the numerical segment (a, 6) as consisting of ail the

numbers lying between a and 6.

The segment or interval (A, B) or (a, 6), must belong to one

of two classes :

(1) open intervals or segments, i.e. those in which one at least

of the end-points or numbers is not included ;

(2) closed intervals or segments, i.e. those in which both end-

points or numbers are included.

These distinctions, which for some purposes are superfluous,

will be found in the course of our work to be often of fundamental

importance.
A point x, which belongs to an interval unclosed at both ends,

is said to be an internal point of the corresponding closed interval, sc

that a closed interval divides all the points of a straight line into

internal, external, and end-points; or similarly for numbers.

The length, or content, or magnitude of the interval (A, B) or

(a, 6) will now be understood* to mean the absolute value of the

difference (6 a) of the numbers corresponding to the end-points
A and B.

The actual value of the difference (b a) may then be called

the distance of the point B from the point A, and written A.B.

When the point oo is the intersection of the line with any

parallel line this is identical with the ordinary definition of

distance The absolute value of the distance is then the satne as

the content
;
but while the content is always positive, the distance

may be positive or negative.



CHAPTER III.

THE DESCRIPTIVE THEORY OF LINEAR SETS OF POINTS.

10. Sets of Pointi. Sequences Limiting Points

Given any set of numbers we have then corresponding to them

a definite set of points on the straight line. Conversely a set of

points on the straight line, or a linear set of points, is understood to

mean any finite or infinite number of points, such that their corre-

sponding numbers form a finite or infinite set
;
for instance all the

integral points, or all the rational points, or all the points of the

segment (0, 1). This definition is to be regarded as equivalent to

the following : a linear set of points consists of points of a straight

line determined by a certain law which is such that (1) every

point of the straight line either belongs to the set or does not,

but not both, nor neither
; (2) assuming that we are acquainted

with all the characteristics of the points of the straight line, given

any point we can determine whether or no it belongs to the set ;

and (3) having already obtained any number or collection of the

points of the set, if there are any points of the set left, the law

permits us to determine more.

A set which is contained entirely in another set is called

a component o/the latter set, and, if there are points of the latter

set not belonging to the former set, it is said to be a proper com-

ponent of the other
; e.g. the Liouville points, which correspond to

the Liouville numbers (Ch. I, 7, p. 8), form a component of the

set of all the irrational points. The remarks made at the beginning
of Chapter I with respect to the order of a set of numbers, apply,

of course, to that of a set of points on the straight line.

If the numbers corresponding to a certain set of points form

a sequence; the set of points is called a sequence, and, by the

Cantor-Dedekind axiom (Ch. II, p. 14), there will be a definite

point L of the straight line corresponding to the number defined

by the sequence of numbers. Since the order of points and
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numbers is maintained, between this point L and any other point

of the straight line we can insert an infinite number of points of

the sequence, thus the interval between L and the points of the

sequence in order decreases without limit* in magnitude. Conversely
it is evident that there is no other definite point of the straight line

having this property. The point L is called the limiting point of

the sequence, and we see tliat a sequence of points has one and only

one limiting point.

Ex. 1. The simplest example of a sequence of points and its limiting

point is that got by dividing a given segment, say the segment (0, 1), into two

equal parts, and then dividing the right-hand segment into two equal parts,

and so on. The corresponding set of numbers is

i. f i-
or, using the binary notation,

1, -11, -111,...

The limiting point is the point 1.

Pig. 2.

The preceding example illustrates the following theorem,

which, from its fundamental importance in the theory of limiting

points, deserves special attention.

THEOREM 1. If we take any series of closed segments, each

lying entirely within the preceding, and if the length of the segments
decrease without limit, the end-points of the segments form a sequence,
and the segments determine one and only one point L, internal to all

the segments.

COR. Such a series of segments open at loth ends deter-

mines one and only one point L, which is either internal to all the

segments, or from and after a definite stage is a common end-point

of them all.

The general definition of a limiting point is as follows :

DBF. A point L is said to be a limiting point of a given set if

inside ^very interval however small containing L as internal point,
there is a point of the 'set other than L, if L is a point of the set.

DBF. A point of a set which is not a limiting point of the set

is called an isolated point of the set.

Thus, in Theorem 1, L is a limiting point not only of the end-

points of the intervals defining it, but also of any set of points such

that at least one of the points lies inside each interval

* This phrase will be used when the constituents of the sequence are positive

and decrease below any positive quantity ; they then have zero as limit.

T. 2
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If the point L is such that every interval however small with

L as end-point, either on the right or left, always contains points

of the set, the point L is said to be a limit on both sides
;
other-

wise, provided L is not an isolated point of the set, L must ho a

limit on one side only, and, every interval having L on the proper
side as end-point, contains points of the set.

DEF. A set all of whose points are isolated points of the set

is called an isolated set.

For instance the set of Ex. 1, omitting the point 1, is an

isolated set.

DEF. A set all of whose points are limiting points of the set

is said to be dense in itself or concentrated.

This is the case, for instance, with the set of all the rational

points, or all the irrational points, or the Liouville points. We
shall return shortly to this idea of density in itself, or concentration,

which is one of the most important descriptive properties of sets of

points, and give further examples.

THEOREM 2. A set consisting of a finite number ofpoints only

has no limiting point ; and if a set lias a limiting point L there is

at least one sequence belonging to the set having L as limiting point.

The first part of this theorem is evident, since the distances of

any point P from the points of the set (ether thau P, if P belong
to the set) being finite in number, one of them is the least, and an

interval of length less than this distance with P as centre contains,

excluding P, no point of the set. The second part of the theorem

is also simply proved; for drawing any interval with . as middle

point, there are points of the set in this interval, and we can there-

fore assign one of them Pl which is not L. Draw an interval of

length LPi with L as middle point, and in this take another such

point P2 and soon. The points P1} P2 ,
... form a sequence with L

as limiting point.

We have seen that L may be a limit on one side only, or on

both sides.' In the former case, every sequence of the given set

having L as limit, will lie on the same side of L, and in the latter

case, there will be sequences tm each side of L, and sequences
whose points lie sometimes on one side, sometimes on the other

of L, having L as limit.

The converse of Theorem 2 is of great importance, and follows

immediately from the definition :

THEOREM 3. Any set ofpoitits, not merely finite in number, has

at least one limiting point.

For, taking any finite segment of the straight line, inside it
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there are a finite or an infinite number of points of the given .set.

Tf, in whatever way we choose our segment, there are only a finite

number of points of the set in it, then, since in the complement.-wry

segment there are always an infinite number of points of the set,

the point oo itself is a limiting point of the set
;
indeed the set has

this and no other limiting point. If, however, we can assign a

finite segment in which there are an infinite number of points of

the set, then wo can bisect this segment, and, in one at least of the

halves, there must be an infinite number of points of th.o set
;
if

this is the case in both, we choose the right-hand half, otherwise

we choose that half in which there are an infinite number of points

of the set. By continued bisection, we obtain in this way a series

of intervals such as were specified in Theorem 1, and the limiting

point which they define will be a limiting point of the flet. Q. E. D.

A limiting point of a set may, but need not, belong to the set.

A set which contains all its limiting points is said to be closed, and

one which does not do so to be unclosed or open. A closed interval

is a special case of a closed set, and an open interval of an open
set. A closed set is in many ways easier to handle than an open
set. We can visualise a general closed set to ourselves in a way
which is not possible in the case of an open set, by means of the

following theorem :

THEOREM 4. Any closed set consists of all the e.vternal and

end-points of a set of non-overlapping intervals?, and conversely.

For either the closed set consists of every point of the straight

line, or else there is at least one point P which does not belong to

the set. Since, however, the set is closed, P is not a limiting pV>int

of the set ; therefore we can assign an interval, containing P and

no point of the given set, and this interval we can increase at

either end until we cannot do so any more without enclosing points
of the given set

;
the end-points are then certainly points of the

given set, since it is closed. If Q be any other point which does

not belong to the given set, it determines in like manner such

an interval, which either coincides with that determined by P or

does not overlap with it, the end-points of each being points of the

given set, and no internal point of either interval belonging to the

given set. Thus the points not belonging to the given set generate
* Those intervals will be commonly referred 10 as the black interval* of the

closed stt (cp. constr. of Ex. 2, p. 20). Cp. Du Bois Raymond, Allg. Funktionen-

tlicurie (1881) ; Harnack, Math. Ann. xix. p. 239 (1892) ; Bendixaon, Acta Math.

n. etc. Two intervals are said to overlap if there is a point which is intern*! to

them both, and to abut if, without overlapping, they have a common end-point.

22
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a set of non-overlapping intervals, whose end-points are points

of the given set. Any point external to these intervals must

therefore also belong to the given set. Thus we see that the

first part of the theorem is true.

Conversely the set of all the external and end-points of a set

of non-overlapping intervals is closed, since any internal pcint of

one of the intervals has a definite distance from the end-points of

that interval, and therefore we can assign an interval free of

external and end-points and containing Ihe point in question as

internal point; thus the point in question cannot be a limiting

point of external and end-points of intervals, so that the latter

points by themselves form a closed set. This not only proves the

second part of Theorem 4, but, since the argument is independent
of whether or no the intervals overlap gives us the following

Corollary :

COR. The set consisting of all points of any segment which

are not internal to any interval of a given set of intervals (over-

lapping or not), is a closed set, and consists therefore of all the

external and end-points of a set of non-overlapping intervals.

We shall see all through our work how important this point of

view is, and especially what a powerful method of dealing with the

properties of closed sets is afforded by Theorem 4.

DBF. A sat which is both closed and dense in itself is called

a. perfect set.

The instances given of sets which are dense in themselves

(p. 18) were open sets, the linear continuum is evidently an

example of a set which is both dense in itself and closed, i.e.

perfect ;
it is not, however, typical of the whole class of nerfect

sets, as the following example shews.

Ex. 2. Cantoris typical ternary set. Take the segment (0, 1) of the #-axis

and divide it into three equal parts and

blacken the middle part ;
this is, in the

,

- 02 - 2 202 'aa

ternary notation ('1, '2), or, as we prefer '02 -2

to write it, (-04, -2). In each un- Fig. 3.

blackened segment repeat the process and so on, ad inf. "We get in this way
a definite set of non-overlapping intervals, and it is easily seen that in the

neighbourhood of any end-point of one of these intervals there will he

intervals of the get smaller than any assignable magnitude, so that these

end-points are evidently limiting points of end-points (of course, on one -side

only). Similarly, any external point will be a limiting point (on both sides)

of end-points; thus the set of all the external and end-points of these

intervals is a set every point of which is a limiting point, Le. it is dense
in itself; also, by Theorem 4, it is closed, thus it is a perfect set.



10] THE DESCRIPTIVE THEORY OF LINEAR SETS OF POINTS 21

The ternary numbers corresponding to this perfect set can be easily

assigned. Denoting by N nny combination of n figures, tfs and 1's, and

by (2A
7
) the number got by multiplying Wby 2, we see that any black interval

obtained by our process will be of the form (-(2AO 02, '(2 AV) 2). Thus the

numbers corresponding to the perfect set of points are all the terminating
and non-terminating ternary fractions not involving the figure 1 (except in

the equivalent form of 2). The limits on the left (lower) side only are those

numbers whioh end in 2
;
the limits on the right (upper) side only are the

terminating ternary fractions not involving the figure 1
; all the non-

\f rminating ternary fractions not involving the figure I are limits on both
sides.

It will be seen that this example is typical of all perfect 'sets,

which do not fill up any portion of the continuum. The two

instances given of a perfect set are strikingly dissimilar in one

particular. If we take any segment, however small, of the segment

(0, 1), then it either lies entirely in a black interval of Cantor's

set, or else there are black intervals inside it; tha is to say,

inside any interval of the given segment there is always an

interval free of points of Cantor's perfect set. This is in direct

contradistinction to the fundamental property of the other perfect

set, the linear continuum, which is such that any such interval

contain only points of the latter perfect set. The example of the

rational points ir one in which in any. such interval no interval can

be found free of points of the set, though in such an interval there

will be points other than those of the set, since the set is unclosed;

this latter set illustrates the property under discussion therefore

better than the continuum itself. This property is called density,

and must be carefully differentiated from the property of being
dense in itself*.

DBF. A set is said to be denov in a, given segment, or dense

everywhere in a given segment, when, assigning any interval, how-

ever small,inside the giv^n segment, there is always inside the

interval a point of the set.

A set is said to be dense nowhere in a given segment, if, assign-

ing any segment, however small, in the given segment, there is an

interval inside the assigned segment entirely free ot' points of the set.

A set which is dense is then certainly dense in itself, but not

vice versa. Indeed we see from the above that a perfect set may
be either dense everywhere or nowhere in a given segment; it

might also be dense in some segments and nowhere dense in others.

* Cantor remark*: "The expression dente in itself denotes a definite property of

a set
;
on the other hand dense everywhere is t ot a priori a property of a set, bat

becomes such onlj when we consider the set in connection with some determinate

n-dimensional portion of space, with respect to \yhich we can ay that the set is

dense everywhere
"
(Math. Ann. van. p. 472).
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It is easily seen, however, that a closed set which is dense in any

segment and therefore perfect, consists of alt the points of that

segment. The black intervals (Theorem 4) of a perfect set cannot

abut anywhere, since a common end-point of two abutting intervals

could not be a limit on either side. If the perfect set is den. e

nowhere in the given segment, the corresponding black intervals .are

said to be dense everywhere in the segment, because the set of points

internal to them is dense everywhere. The black intervals of the

general perfect set will not be dense everywhere ; any interval,

however, which has no part common with a black interval, consists

entirely of points of the perfect set. Thus the black intervals

together with all those intervals in which the set is dense every-

where, form a set of intervals dense everywhere. The points not

internal to these intervals all belong to the perfect set. Thus

the most general perfect set consists of all the points not internal

to a set of intervals dense everywhere, together with possibly all the

internal points of one or more of those intervals.

If we take a perfect set nowhere dense and omit those of its

points which are end-points of the corresponding black intervals,

we get a set which is dense in itself and nowhere dense. We notice

too that such a set may be said to be dense in itself on both sides

that is to say every point of it is a limit on both sides, just as it

would be if the set were dense everywhere in the segment. If, on

the other hand, we took the set consisting of all the right-hand

end-points of the same black intervals, we should have a set which

might be said to be dense in itself on the right only, which is, of

course, only possible when the set is nowhere dense. The numbers

corresponding to a set which is dense in itself on both sides are

such that there is no definite number immediately preceding or

immediately following any given number of the set
;
the numbers

of a set, on the other hand, which is dense in itself on the right

only, are such that immediately preceding a given number of the set

there is a definite number of the set, but not immediately following

it; similarly, when a set is dense in itself on the left only, every
number has a definite one following but not preceding it.

11. It is to be remarked that the properties of sets of points
discussed in the preceding paragraph, presuppose, as is always the

case in Cantor's work, the existence of an underlying continuum.

It is, however, easy to frame corresponding definitions, and discuss

corresponding properties when all that is presupposed is the

existence of some underlying set. In speaking of a segment we
shall then naturally confine our attention to points of the funda-
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mental set lying in that segment. Theorem 2 will perhaps serve us
most logicallyas a definition of a limiting point, and a sequence we
shall define by the property of possessing one and only one limiting
point. The property of a component set of being dense in itself

is, as was pointed out (footnote, p. 21), independent of the funda-

mental set ; the property of being closed is however evidently de-

pendent on the latter, provided the fundamental set be unclosed, for

the component set might in that case be an open set, and yet
closed with respect to the fundamental set, if it contained all

those of its limiting points which were points of the latter.

Similarly the property of being dense everywhere can be so defined

as to represent a general relation between a component set and
the fundamental set, as follows :

DBF. A component set is said to be dense everywhere in the

fundamental set, when, assigning any interval containing a point
of the latter set as internal point, there are always inside this

interval points of the component set.

A component set is said to be dense nowhere in the fundamental
set, if, assigning any segment containing a point of the latter set

as internal point, there is always inside this segment an interval

containing a point of the fundamental set and no point of the

component set as internal point.

12. Derived Sets. Limiting points of various orders.

It is evident from the preceding articles that, while the limiting

points of a given set are always present, except in the trivial case

when the number of points in the given set is finite, the limiting

points may themselves be infinite in number, and may even contain

every point of the given set and other points as well.

DBF. The set consisting of all the limiting points of a given
set E is called the first derived set of E, and will be denoted byJ^.
The first derived set of E^ is called the second derived set of E

t

and denoted by E?; and generally the first derived set of En ,

where n is any integer, is called the (n+l)th derived set of Et
and

denoted by En+l .

Any point of En which is not a point of En+l is called a limiting

point of E of the nth order,

Ex. 3. In Ex. 1, p. 17, the first derived set consists of the point 1 alone,

which is a limiting point of the first order, the second derived set not existing

at all.

If, denoting by 7\ the set obtained, as in that example, by continued bisec-

tion of the right-hand half of a segment, we place in the segment (0, 1) a set

TI and then in each of the intervals between consecutive points of the set so
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obtained we place a set Ji, the set of points so obtained will have A limiting

point of the first order at each of the points of the set of Ex. I, and this

latter set will be the first derived set
;
the second derived set will consist of

the point 1 alone, and will bo a limitiug point of the second orden
;
the third

derived set will not exist at all.

Denoting a set constructed in the above manner in any segment by T3 ,
we

can obtain a set in which the point 1 is the single limiting point of the third

order, and limiting points of higher order do not exist, by inserting between

each pair of consecutive points of a set 7g a set Tl . Similarly we can construct

T,
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This set E possesses derived sets of every order, and each'such set consists

of an infinite number of points. The binary numbers corresponding to the

points of E&re all those of the form lm 01* 01* 01* ... 01" 01", where there

are at most n zeros, and the corresponding powers of 1 may be absent, or the

indices ,,... have any integral values whatever.

In Ex. 4 every limiting point, except the point l,has a definite

order. If we wish to extend the idea of order so as to be applicable

to the point 1, we must say that the order of the point 1 is infinite
;

we shall see, however, that with our present ideas of an infinite

number this terminology is undesirable and much too indefinite,

since points which bear the same relation to one another as limiting

points of orders 1 and 2, for instance, are in this way classified

together. In a subsequent chapter we shall see that these very
considerations lead us to an extended scheme of ordinal numbers,

Cantor's numbers, which enable us to differentiate completely
between objects like limiting points by means of ordinal indices.

For the present it is only necessary to realise that limiting

points may have these characteristics, in order to avoid mistakes

which easily occur when we trust to our pristine conceptions of

limiting points.

To illustrate what was said above about limiting points of

infinite order, we have only to take the set constructed in any one

of the preceding examples, and place between each pair of conse-

cutive points a set of the type of Ex, 4. In this way we get whole

infinite sets of points of the type of tho point 1 in Ex. 4, and the

limiting points of this set, bearing the same relation to its isolated

points as the limiting points of the first, second, ... orders did to

the original set, ought properly to be considered as of one, two, ...

higher Order?.

13. Deduction. DEF. The process of taking all the points
common to an infinite series of sets of points we shall call

deduction.

Thus in Ex. 4 the point 1 is deduced from the series of derived

sets. Further we see that it is possible to construct examples on

the principles already employed, in which the points deduced from

the derived sets themselves form an infinite set, with derived sets

of any required order, or with derived sets of every order from

which we can obtain a new set by deduction, and so on.

In performing Jhe process uf deduction we are of course only

concerned with those points ot each set of the series which are

contained in all preceding sets of the series, in, general the sets

from which we wish to deduce are originally given in this form
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(as fur instance in the case of the derived sets, each of which is

contained in all the preceding derived sets). When this is not the

case we mush reduce the given series to such a form, before

investigating whether or no we can apply the following theorems.

THEOREM 5. Cantor'i Theorem of Deduction. IfGlt Gt ,...

be a series of closed sets of points, such that each is contained in all

the preceding sets, then there is at least one point common to all the

sets; and the deduced pointsform a closed set.

For, let us choose one point from each set ; let these be

Then either there are only a finite number of these points which

are distinct from one another, or else they form an infinite set.

In the former case there is at least one of the points such that,

assigning any integer m, there is an integer n > m, such that Pn is

identical with the point in question ;
then Pn will, by hypothesis,

belong to every set up to the nth inclusive, that is to say, since

m could be chosen as large as we please, Pn ia common to all the

sets. In the second case, by Theorem 3, the points have a limiting

point L, which, as a limiting point of all the points after Pm (that

is, of points of Gm),
is certainly a point of the closed set Gm , and

therefore, as before, is common to all the sets.

To prove that the deduced points form a closed set, we have

only to consider that if they are finite in number they have* no

.limiting point, and therefore form of course a closed set
;
other-

wise let L be any one of their limiting points, and Plt P2 ,
... a

sequence of the deduced points having L as limit, then since Pa is

a point of GI, Pa of (?2 ,
and so on, L is a limiting point of a sequence

of points chosen one from each successive set of the series, and is

therefore, as before, a deduced point. Thus the deduced points
form a closed set. Q. E. D.

When the sets of the series are unclosed, we have no security

that any point at all can be obtained by deduction. Take for

example th'e series of derived sets Elt Et ,
... of Ex. 4, omitting

the point 1 from every one. These sets have no common point
at all.

The following theorem is an immediate consequence of the

definition, and is true whether or no the defining sets are closed.

THEOREM 6. The deduced set cannot be identical with any of
the defining sets* unless from and after a definite stage all sets of
the series are identical.

*
Subject to the above condition that each set is contained in all preceding sets.
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14. Theorems about a set and its derived and deduced

sets.

THEOREM 7. A limiting poittt of limiting points in a limiting

point.

For let L be a limiting point of limiting points ol a given set

$. Let LI, Lt ,
... be a sequence of limiting points of E, having

L as limit, *nd all lying on the samo side of L. Then since Lv is

a limiting point of E, therefore, by Theorem 2, between L.ir-i and

L.B.+! there will be a point, say Pr ,
of E. These points jP,, Pt ,

...

form then a sequence having L as limit, so that L is a limiting

point of E. Q. E. D.

COR. Every derived set is a closed set.

THEOREM 8. The first derived set of a closed set is contained in

that set.

This follows at once from the definitions.

COR. Each derived set is contained in all ilia preceding derived

sets.

DEF. From Theorem 5 together with the two corollaries just

given it follows that, if the derived sets of every order exist, there

is always a closed set of points common to all the derived sets,

this set we call the first deduced set of E. As at the end of 3

we can easily construct examples of sets whose first deduced

sets have derived sets of every order, in such a case the first

deduced set will itself have a first deduced set, and this we
call the second deduced set of the original set; and generally
the first deduced set of the nth deduced set, where n is any

integer, is called the (n + l)th deduced set of the original set.

By the theorem and corollaries quoted, all the sets so obtained

are closed and each is contained in all the sets previously obtained:

it is also quite easy, in the manner indicated, to construct sets in

which deduced sets of every order exist; this is done explicitly

in Ex. 5. Wheu this is the case we can deduce a closed set from

the series of deduced sets, or which is the same thing, from the

whole series of sets obtained b} repetition of the processes of

derivation and deduction in the manner indicated.

In this way we can continue in systematic manner our pro-
cesses of derivation from each set obtained, and deduction from

every series of sets so obtained.

It is to be noticed that, if .an infinite series of sets each of

which is contained in all the preceding sets have a definite last
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set, the deduced set will be the same as this last set; thus, arrived

at any definite set by means of the processes of derivation and

deduction, if we now deduce, we shall only get that set already

obtained, and we must apply the process of derivation in order to

progress a stage farther. Whenever we have an infinite series of

the sets without a last one (that is a definite law by which any
such set can be recognised), we progress a stage further on by
deduction.

By the theorem and corollaries quoted, every set obtained in

this way from a given set E is a closed set, and is contained in all

the preceding sets (not including E, unless E is closed). These sets

are called the series of derived and deduced sets of E.

Ex. 5. Take the set E of Ex. 4 (Fig. 5), and in the interval (0, -01) insert

a set similar to E. The point '01 becomes in this way a point of the first

deduced set of the set we are constructing. In the interval (-01, 'Oil) insert

a set similar to that already constructed between the point and the left-hand

end-point -01 of this interval, that is a set similar to E.

Similarly in each interval between consecutive points of the set E, we
insert a set similar to that already constructed between the point and the

left-hand end-point of the interval in question.

We obtain in this way a perfectly definite set, say F, which is of great

assistance to us in picturing some of the possibilities in the way of derivation

and deduction.

Every point of E to the left of the first limiting point of the first order, *1,

evidently belongs to the first deduced set of F; while '1 itself belongs to the

first derived of the first deduced set of F, and the same will therefore be true

of every point of E between -1 and the next limiting point of the first order

101
;
this latter point will belong to the second'derived of the first deduced

set of F.

In this way we see that the first limiting point of the becond order of E
t

the point 11, will belong to the second deduced set of F, and the first limiting

point of the third order of E, the point '111, to the set deduced from the first,

second, ... deduced sets of F
t
and so on to sets further and further on in the

succession of derived and deduced sets of F.

We have then before us in the series of derived and deduced

sets of-an arbitrary set a never-ending vista of possibilities, with

a perfectly definite property of order or succession to which we
shall have reason constantly to recur, and into which we shall find

we are able to introduce certain simplification.? of a very important
character. For the present it is only desirable to bear in mind
that the series may be one of a very complicated nature, as, for

instance, in Ex. 5, and we proceed to enunciate and prove certain

elementary theorems with respect to the sets of the series when
the given set has certain standard forms.
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THEOREM 9. The first derived set of a set which. t* dense in

itself is perfect For, the set being dense in itself, it is, by defini-

tion, contained in its first derived set; any point of the latter,

therefore, is a limiting point of its own points, thus the first

derived, which by Theorem 7, Cor., is closed, is also dense in itself,

and therefore perfect.

The next theorem does not require proof, being an immediate

consequence of the definitions.

THEOREM 10. A perfect net is identical with its own first

derived; and, conversely, a set which is identical with its first derived

is perfect.

COR. By means of the processes of derivation and deduction we

obtain always the same setfrom a perfect set ; and if by means of
these processes any set is identical witfi any oititr set, tftis must be a

perfect set.

From the above, together with Theorem 6, the following

theorem follows :

THEOREM 11. Unless one of the sets obtained by derivation and

deduction is perfect, all tfte derived and deduced sets are distinct

from one another.

The next theorem again does not require proof:

THEOREM 12. The first derived of a set which is dense every-

where in a segment (A, B) consists of the whole continuum (A, B) ;

and conversely, if the first derived consist of the whole continuum

(A, B), the original set was dense in (A, B).

Similarly the same is true if instead of a segment (A, B) we

take any perfect set
;
but the theorem is not true if instead of a

perfect set we substitute any set we please.

THEOREM 13. The first derived of a set which is dense nowhere

is itself dense nowhere.

For, given any segment, we can determine in it an interval in

which there are no points of the given set, and therefore, by
Theorem 2, at most the end-points of this interval can be points

of the first derived set, but no internal point of this interval can

be such. Hence in every segment there is an interval entirely

free of points of the derived set, that is, it is dense nowhere.

15. Intervals and their Limits. A set of intervals on the

straight line may be (1) overlapping, that is such that at least two
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of the intervals overlap (see p. 21, footnote), or (2) non-overlapping,

i.e. such that no two overlap.

In Theorem 1 we had a simple example of a set of overlapping

intervals, and it was shewn that they determined a limiting point.

If in that theorem we were to omit the condition that the length
of the segment should decrease without limit, the left-hand end-

points would have one limiting point, and the right-hand end-

points another limiting point, and the intervals would determine

instead of a limiting point a limiting interval, internal to all of

them, whose end-points would be these two limiting points. The

connection between intervals and limiting points is exceedingly

important. Theorem 14 is a generalisation of Theorem 1, and

the corollary stands in a certain sense in contradistinction to the

latter theorem, since in it the limiting points are never internal

to the intervals while in Theorem 1 the contrary was the case.

DEP. A limiting point of a set of intervals is one such that

in any segment containing the point as internal point, there are

intervals of the given set

A limiting interval of a set of intervals is one such that in any

segment containing the interval as internal interval there are

intervals of the given set containing the limiting interval, with at

most one end-point common with it.

It is evident from the definition that a limiting point of a set of

intervals is a limiting point both of the right-hand and the left-hand

end-points of the intervals which determine it, and we shall have to

distinguish, as we did before, between the case when the point is

a limit on one side only, or on both sides
;
in the former case the

segment used in the definition can be taken to have the limiting

point as one of its end-points. If the point be a limit on one side

only, it cannot be internal to the intervals, but may be either (1)

external to all of them, or (2) an end-point of one or more of them
on the side on which it is not a limit, in which case it may be said

to be semi-external to the set of intervals, or (3) finally it may be a

common end-point of a sequence of intervals as in Theorem 1, all

lying on the side on which the point is- a limit. If the point be

a limit on both sides, it may be either internal or external to the

intervals, or may be an end-point, on both sides of such sequences
of intervals as above (3).

In the case of a set of non-overlapping intervals these possi-
bilities are materially simplified. In this case a limiting point on
one side must evidently be either external or semi-external, and a
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limiting poiiit on both sides can only be an external point of the

intervals. Further a semi-external point can be an end-point
of only one of the intervals. A set of non-overlapping intervals

evidently has no limiting interval.

THEOREM 14. Any set of intervals, nQt merely finite in number,

which has no limiting interval, has at least one limiting point.

This follows at once from Theorem 8, the sot of points there

mentioned being taken to be that of the left-hand (or right-hand)

end-points of the intervals. These certainly have at least one

limiting point, and, having determined one such limiting point,

and a sequence of the defining set having that point as limit, we

only have to take the corresponding right-hand (or left-hand)

end-points and determine their limiting point or points.

If this point or one of these points coincides with the point

already found, this latter is a limiting point, otherwise it is an

end-point of one or more limiting intervals, and we must proceed
to investigate whether there is another limiting point of the left-

hand (or right-hand) end-points which coincides with a limiting

point of the right-hand (or left-hand) end-points of the same

intervals
;

if this is the case we have a limiting point, and if not

the set of intervals has only limiting intervals.

COR. Any infinite set of non-overlapping intervals has at least

one limiting point,

16. Upper and lower Limit. The following remarks, though

they have nothing particular to do with the main matter of this

.chapter, must, because of their bearing on the use of the term

limit, find their place here.

A set of points must be such that it either (1) consists of

points which are all internal to some finite segment (A, B) or

(2) we can assign no finite segment containing every point
of the given set. In the latter case, however, we can distin-

guish two cases, (2a) it may be possible to assign one definite

point P, such that the segment (P, oo ) contains every point
of the set, or (26) this may not'*be possible. In the case (1),

if the points A and B are not both either points of the given set

or limiting points of the set, we can curtail the segment without

allowing any points of the set to escape. Diminishing the segment
in this way as much as possible, we must ultimately come to two

definite points A' and B', such that any .further diminution would

cause some point of the set to become external to the segment.
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These points A' and B' may belong to the set, but. this is not

necessary if the set be unclosed. If they do not belong to the set

however it is easily seen that they must be limiting points of the

given set, and, of course, limits on one side only.

The same is true of the corresponding numbers. If of the two

numbers a' and b', corresponding to A' and B', a' is that which is

algebraically less than b', then a' is called the lower limit and b'

the upper limit of the set of numbers.

The term is not altogether a happy one, since a' and b' are not

necessarily limits in the sense in which we have hitherto used the

term. A and R may be isolated points of the set, or pointe of

condensation, that is, limiting points in the sense in which we have

used the term ;
in the latter case they will belong to the set if it

be closed, but not necessarily if it be open ;
in the former case they

must of course beloog to the set.

Similarly in case (2a) we can determine a definite point f
which is either a point of the set or a limiting point, and such

that every point of the set is contained as internal or end-point in

the segment (P', oo
).

In this case, according as the numbers

corresponding to the set of points are all algebraically greater or

less than p', p' is called the lower or upper limit of the set In

this case the same remarks as before apply to the meaning of the

term limit, as far as it concerns p' or P7

;
the point oo must

however be a point of condensation. To differentiate between the

cases when the upper and the lower limits are infinite, the follow-

ing convention is made as to sign*. According as p' is the lower

or upper limit, the upper limit is said to be + oo
,
or the lower limit

oo . In case (26) the upper and lower limits are + oo and

oo respectively. Summing up we have the following state-

ment :

Any set of numbers has a definite upper limit L and a definite

lower limit I (either of which may be finite or infinite in absolute

'magnitude). If the set be closed, both limits belong to the set, if

open they need not do so, but if not, they certainly correspond to

points of condensation of the set.

The difference (L I) is sometimes called the oscillation of the

set of numbers.

*
Cp. p. 6, footnote.



CHAPTER IV
r *

POTENCY, AND THE GENERALISED IDEA OF
A CARDINAL NUMBER.

17. The principle of measurement has been analysed into two

primary constituents. The first is the determination of a standard

object, or unit
;
the second is the calculation of how many times

the unit has to be taken so as to be equivalent to the object to be

measured in respect of size. The answer to the question- -how

many times ? would be given in the form of a positive integer,

and would be determined by counting, that is, by setting up a

(1, 1^correspondence between the repeated unit and the several

parts of the object under discussion, properly divided and arranged.
Sometimes the question could not be answered accurately, and it

was necessary to take a new unit. When the old unit could itself

be accurately measured integrally by means of the new unit, the

idea of ratio in the Euclidean sense and the introduction. of frac-

tional symbols, enabled people to do without the new unit. In

the same way the generalised idea of ratio and the concept of an

irrational number such as we have defined it, made the new unit

superfluous, whenever the ratio could be expressed approximately

by means of rational numbers forming a sequence.
This idea of measurement we are going to apply to the theory

of sets of points, or numbers. We are going to answer, as far as

we can, the question, how large is a given set ? or, put more

precisely, how many points are there in a given set ?

We shall regard the question as primarily answered, if we can

give an integer which expresses exactly how many times we must

repeat some known set, in order that we may be able to arrange
the points of the given set, and those of the repeated set, or unit,

in (1, 1^correspondence. Subsequently we shall endeavour, by
the introduction of appropriate numerical symbols, called potencies,
to do away with the necessity for the use of any unit, except the

simplest conceivable one, i.e. a single point.

3
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DBF. -Any two sets which can be brought into (1, l)-corre-

are said to be equivalent or to have the same potency.

18. Countable Set*. Starting with a single point as unit,

it is evident that the only sets which we can measure are the

so-called finite sets, that is those consisting of a finite number
of points only, or, in descriptive language, those devoid of limit-

ing points. The simplest potencies are thus the natural numbers

themselves. Following 'out the idea developed in the preceding

chapter, of taking the limiting points as the basis of our investiga-

tions, we naturally take as our next unit a sequence of points, that

is a set having only .one limiting point, and ask what sets can be

arranged so that their points can be brought into (!, l)-corre-

spo&dence with those of a sequence. The following theorem shews

why the terra
"
countable

"
is applied. to all such sets of points.

THEOREM 1. A sequence can be brought into (1, ^-corre-

spondence with the natural numbers in their entirety.

Let L denote the limiting point, this may belong to the

sequence or not
;

if it belongs to the sequence we assign to it the

number 1. Between L and any other point if we take any point
A

, and on the opposite side of L we take any point B. Then,
since in the segment* bounded by A and B and containing the

point M there is no limiting point of the sequence, the -number of

points of the sequence in it is finite, say n, and we can take them
in any order we please and attach to them the numbers 1, 2, .... n,

or 2, 3, . . ., n, n 4. 1, according as the point L is not, or is, a point of

the sequence.
First let us assume that L is not the point oo . Then bisecting

(L, A) at A l by the same argument there are only a finite number,

say a,, of the points of the sequence in (A, AJ, and we can take

them in any order, and attach to them the next w, integers. Then

bisecting (L, } we can do the same thing ;
and so we go on,

bisecting alternately the segments on each side of L, and counting
the points in that half segment which is not terminated in L.

In this way we attach to each point of the sequence a definite

integer, and vice versa. Thus the sequence is brought into (1, 1)-

correspondence with the natural numbers.,
If L be the point oo

,
we only have to alter the process so far

that, instead of continually bisecting the segments on each side of

* The straight line being regarded, as in the preceding chapter, an divided into

two segments by A and B.
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^ we take the segments (A, ItyOM,), (#, #i), (4,,4), (Blt
Bt\...

ail of the same leugth.

COR. Any two sequences can be brought into (1, ^-corre-

spondence with one another.

DBF. Any set which can be brought into (1, 1 ^correspondence
with some or all of the natural numbers is said to be countable,

and, if not a finite set, is said to be countably infinite.

It follows from this definition that any component of a countable

set is countable.

THEOREM 2. A ny set which can be divided into two parts, each

of which is countable, is itself countable.

For, let the points of the one part be denoted by
P P* it *

> _>
and those of the other part by

ft, ft, ;

then we can arrange them in the order

Pi, ft, P2.&>
and " count

"
them' as they stand.

COR. 1. The set consisting of all the points of any finite

number of countable sets is itself countable.

COR. 2. If the set consisting of all the points of any finite

number of sets is countable, each of the sets is countable.

COR. 3. Any set of points whose limiting points are finite in

number is countable.

THEOREM 3. Any set which can be divided into a countable

number of countable parts is itself countable.

For, let us denote the points by means of a system of double

indices, the first giving the number of the part to which it belongs,
and the second its place in that part, when properly arranged.

Arrange these pairs of numbers in the form of a wedge :

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) ft 2) (2, 3)

(3,1) (3, 2) (3, 3)

We can then take each column in order and read it from

the top to the bottom ;
since each column contains only a finite

number of brackets, we can " count
"
the brackets in this order.

32



36 POTENCY, AND THE GENERALISED IDEA [CH IV

COB. Any system which can be characterised by a triply

infinite, quadruply infinite,... etc. system of indices is countable*.

By the above, any set which can be brought into (1, ^-corre-

spondence with a sequence repeated any number of times (that

is to say, any set which can be brought into (, ^-correspond-

ence with a sequence), is countably infinite. On the other hand

it is clear that any two countably infinite sets can be brought into

(1, 1^correspondence, thus we only get one new potency by this>

means, viz. the potency of the natural numbers. In accordance

with the principles with which we started, we shall assign to this

potency a symbol a. The symbol a, regarded as an extension of

the cardinal numbers 1, 2, ...m, ...n, ... which we saw to be the

simplest possible potencies, has iu many ways the properties of

the symbol oo,.used in an earlier part of our work: we shall

see, however, that a is more precise than oo
,
and that there

are other potencies which have in an equal degree the pro-

perties of the symbol oo
; all such potencies are called trans*

finite and the corresponding sets are called infinite sets. It is

clear that no proper component of a finite set can have the same

potency as the whole set, but this is not true of a countably
infinite set. For instance, all the even integers can be brought
;nto (1, ^-correspondence with all the integers, by making any
even integer 2k correspond to k. Thus all the even integers form
a countably infinite set. Similarly all the odd integers form a

countably infinite set. What is true of the potencies of sets of

integers follows by (1, 1^correspondence for the potencies of com-

ponents of any countably infinite set. Thus a countably infinite

set has not only components of every finite potency, but also proper

components which are countably infinite. This property that a

set can be brought into(l, 1^correspondence with a part (proper

component) of itself has been sometimes taken as the defining
characteristic of an infinite set in contradistinction to,a finite set^.

19. The properties of the number a already discussed are

conveniently expressed in symbolic form. To do this it is necessary
to give a preliminary definition of addition and multiplication of

potencies. The' general definitions and the discussion of the

*
It is to be noticed that we cannot deduce as & second corollary that any set

whose limiting points are countable is itself countable. This theorem will however
be proved shortly.

t Dedekind, Wat tind und wot sollcn die Zahlen ? Cp. Russell, Principle$ of
.M tli entities, p. 121, seq.
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validity of the processes are reserved for the chapter on Cantor's
numbers. ,

DBF. Let (?,, #,,... be any countable number of sets of

points without common points, and let their potencies be glt <ft

The set consisting of every point belonging to these sets is said

to have as potencythe sum of the potencies of Qlt G2 , ... .

Regarding as objectively known, and denoting its potency

by g, the process of recognising that the sets Glt Gz , ... actually
do form G in the manner indicated, is represented symbolically by
the equation

9=9i + fft+ "

and is called addition.

These definitions can be generalised by using any set (instead
of a countable number) of sets. The notation however must then

be modified.

The set of all the common points of a set of sets is called their

sum, and the process of forming the sum is called addition of sets.

Unless, however, the sets are without common points, the potency
of the sum is not necessarily the sum of the potencies.

DBF. If the sets GI, GZ) ... are all equivalent, and -y
be their

number, whether finite, or countably infinite, or their potency in

the general case, the equation

9 = Wi
is substituted for the preceding equation; g is then called the

product of the factors 7 and g}
. The process is then called

multiplication.

In other words any set which can be brought into (gl} ^-corre-

spondence with a set of potency 7 has the potency TJ/J.

It is immediately evident that these definitions agree in the

case of finite potencies with those given in Arithmetic, and that

the addition of a finite number of potencies may be effected by
the repetition of the process of adding two potencies, the commu-

tative and associative laws holding. Multiplication, as ia Arith-

metic, may be extended to any finite number of factors by

repetition of the proces? of multiplying two factors, and the proofs

given in Arithmetic of the commutative, associative and distributive

laws will still hold.

When the factors of a product are all equal, the product is

called a power of <7, ,
and the usual notation is employed.
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Thus, by the preceding theorems,

= a= n + a,

a -f a = 2a = a2 = a,

no, = an = a,

a . a = a2 = a,

a . a . a = a* = a,

an = a.

20. Countable Seta of Intervals. A most important ex-

ample of a countable set is the .following :

THEOREM 4. CANTOR'S THEOREM OF NON-OVERLAPPING

INTERVALS. Every set of intervals on a straight line w? countable,

provided no two overlap*.

For, let 0,, 6j, ... be any sequence of positive numbers having
zero as limit, and let us consider only the case when the intervals

all lie in a finite segment (A, B) of length I. There is in this

way no IQSS of generality since we can bring the whole infinite

straight line into (1, 1^correspondence with (A, 5)f.
The number of intervals of the given set whose magnitude

lies between er and er+i must be finite, since the intervals do not

overlap : let these be arranged in any order and denoted by Gr .

Then Gr is finite and the whole set can be arranged in the order

Gj, 6r2 ,
... and "counted" as it stands; which proves the theorem.

THEOREM 5. Given any set of intervals (overlapping in any

way), we can determine a countable set.from among them, such that

every point internal to any interval of the given set is internal to an

intei*val of the countable set, and vice versa\,

Take, first, any one of the intervals, and let us denote it by d

or B. Then, either there is no interval of the given set which

overlaps with d on the left (that is, which contains the left-hand

end-point of d), or else we can determine

such an interval. In the latter case we 8' d=3

denote by B' the part of this interval which -^
extends beyond d to the left, and by d' the

p .

interval itself.

Proceeding in this way towards the left, we must ultimately
either come to an interval of the given set having no interval

* Stated and proved for sets of regions in n-dimensions in precisely this way by

Cantor, Math. Ann, ii. p. 117 (1682).

t Infra, 23. t Proe. L. AT. S. xxxv. p. 384.
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overlapping with it on the left (this might, of course, have
been the original interval d\ or else the parts 8', 8", 8'",...

being themselves nonoverlappirig intervals, must get smaller
and smaller without limit, and define a limiting point P ex-

ternal to all of them, and therefore external to the corresponding
intervals d', d", d'",... of the given set*. Such a point P may,
however, be internal to some other interval of the given set;
in this case, we choose out any one of the intervals containing
P, say D. There will be only a finite number of the intervals

d, d', d", . . . which do not overlap with D. Let di be the first

which overlaps with Z); then we select

the intervals d, d', d",... d (i)

, D, and omit 9 f
'"'*

from consideration all the intervals !
(t+1)

,

d(i+v
Proceeding on these lines, we

can only be stopped (1) by coming to an

interval of the given set having no interval overlapping on the left,

or (2) by the parts 8', 8", 8"', ... becoming smaller and smaller and

defining a limiting point Q on the left of ail of them, such that

no interval of the given set contains Q as internal point. In .the

latter case Q would be external to every one of the given intervals,

unless it were semi-external, being a right-hand end-point of one or

more of them. In case (1) the left-hand end-point P of the final

interval might be the right-hand end-point of one or more of the

given intervals, it would then be called an isolated end-point, and

we should take any one of the intervals of which it was the right-
hand end-point and proceed as before to the left. Otherwise in

case (1) P would be external to all the given intervals except
such as have it for left-hand end-point, and would again be a

semi-external point of the given intervals.

Having proceeded in like manner on the right of d, we start

afresh in eah of the one or two segments left over, and take

again any one of the intervals and treat it as we did d. Con-

tinuing this process, we get a set of non-overlapping partial

intervals B', 8", 8"',... etc., which, by the preceding theorem, can

be arranged in countable order 8j, 82 , S,, ... and, corresponding to

these, a countable set of the given intervals, d^, d?, d3 ,
... such that

each 8r coincides "with part or the whole of some d^ and has at

least one end-point common with it. Any other of the given set of

intervals lies entirely within one of the di'a, or else within a set of

the di's which overlap or abut all along.

Ch. III. 15.
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By our construction any point which is internal to any one of

the given intervals is internal to one of the d,-'s, and any external

point of the given intervals is external to the rft's, any semi-

external point of the given intervals is semi-external to the rf/s,

and finally, any point which is an isolated end-point of intervals

of the given set both on the right and on the left is an end-point

of two abutting intervals of the di's.

Such a countable set dlt c^, ... chosen in the manner indicated

from among the intervals of the given set serves to classify the

points of the straight line in reference to the set of intervals as

completely as the whole set itself.

On account of the fundamental character of this theorem, we

add an alternative proof. Yet a third proof will be found virtually

given in Part II, where the corresponding theorem is stated and

proved for any number of dimensions.

LEMMA*. If G be a countable set ofpoints, any set of intervals

whose end-points are points of G, is countable.

For, denoting the points of G by Pl} Py ,
... and the interval

whose end-points are Pj and P2 by (1, 2), and so on, the. theorem

follows by Theorem 3.

COR. Anysetofintervalswhose end-points are rational is countable.

THEOREM 5 (Alternative proof).

If P be any point internal to one of the given intervals (A, B),

there is a rational point R between A and P, and one R' between

P and B. There is therefore an interval (R, R') with rational

end-points, containing P and lying inside (A, B). Thus the

intervals with rational end-points, each of which lies inside one of

the given intervals, contain asjnternal points every internal point
of the given intervals. By the preceding corollary these intervals

are countable, arid may be denoted by Sx , 82 , ... .

Take an interval of the given set containing ^ and denote it

by dj. Let the first of the S's not contained in d^ be 8j. Take an

interval of the given set containing Sf and denote it by a?, and so

on. We thus get a countable set of the given intervals, dlt d.,,...

containing as internal points every internal point of the S's and

therefore of the given intervals. On the other hand, the d's being
intervals of the given set, every point internal to them is internal

to the given set. Thus the intervals di, a*,... satisfy the re-

quirements. Q. E. D.

* The principle of this Lemma was first used by F. Bernstein in his proof of

Theorem 19.
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COR. Given any set of intervals, a countable set of intervals with

the same internal points can befound, the end-points of these intervals

being rational (or belonging to any convenient set dense everywhere).

This has been incidentally proved in the course of the pre-

ceding proof.

THEOREM 6. THE GENERALISED HEINE-BOREL THEOREM.
Given any closed set of points on a straight line and a set of
intervals so that every point of the closed set of points is an internal

point of at least one of the intervals* then there exists a finite number

of the given intervals having the same property*.

By the preceding theorem we may take the intervals to be

countable, and denote them by dl} dt ,
Then da may overlap

with di, and, if so, may be divided by dl into two or into three

parts. Denoting d^ by 8lt and the non-overlapping whole, part, or

parts of d* by 82 ,
or by 8,, 83 ,

and similarly denoting the parts of

each successive interval not common to it and preceding intervals,

we get a set of non-overlapping partial intervals 8j, 2 , ..., and we

may assume that we have omitted any which do not contain

points of the given set as internal points or as isolated end-points.

If the chosen intervals Slt 2 , have no external or semi-external

point they are finite in number ( 15), and it is clear that any
such limiting point would be a limiting point of the given closed

set and therefore a point of that set. But this is impossible,

since no internal point, of the given intervals can be external or

semi-external to the non-overlapping intervals o\, 8a ,
.... There-

fore there are only a finite number of the intervals 81} Sj, ..., and

the corresponding intervals d, of which they form parts, are also

finite in number, and contain every point of the given closed set

as internal points. Q. E. D.

A. special case of the above is the following :

THEOREM 7. THE HEINE-BOREL THEOREM. Given any set

of intervals such that every point of a given closed segment (A, B)
is internal to some interval of the set, we can choose out a finite

number of the intervals having the same property^.

THEOREM 8. Given any set of intervals (overlapping in any

way), we can determine from them in one and only one way, an

equivalent set of non-overlapping intervals, such that every internal,

external or semi-external point, as well as every isolated end-point

of the one set bears the same relation to the other set.

* Proc. L. M. S. MXV. p. 387.

t Borel, Ann. de I'ficolc Norm. (3) xii. p. 51 (1895) ; Leymt ntr la Thforie de$

Fonctions, p. 42 (1898). The theorem was stated by Borel onlj for a oounfcably

infinite set of segments. Heine, Journ. f. Math. uurv. p. 188 (1872).
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The partial intervals 8,, By t ... determined as in the proof of the

preceding theorems, are not determined uniquely, but they have

the same external and semi-external points as the given set, and

any isolated end-point of the given set is an isolated end-point of

the S's, hence, if we make ail the isolated end-points of the 8's,

except those which are isolated end-points of the given set, into

internal points, by amalgamating all the corresponding abutting
intervals 8, we get a set of intervals which is the same, however

the B's were constructed, and depends only on the given set, and

clearly has the properties mentioned in the enunciation.

COB. The semi-external points and the isolated end-points of

any set of intervals are countable.

21. The following theorem follows simply from Cantor's

Theorem of non-overlapping intervals ( 20).

THEOREM 9. Any isolated set ofpoints is countable.

For, if P be any point of the set, then, since P is not a

limiting point of the set, we can assign an interval containing P
as internal point, and no other point of the set inside it or

bounding it. Doing this Avith all the points, and, whenever two

such intervals overlap, shortening one or both of them till they

only abut, we get a set of non-overlapping intervals, each contain-

ing one and only one point of the given set. Since, by Cantor's

Theorem the intervals are countable, the points are so also. Q. E. D.

Now, since any set consists of certain of its limiting points

together with its isolated points, the following can be deduced as

corollaries.

COR. 1. Those points of a set E which, do not belong to the first

derived set E^ are at most countable.

COR. 2. If the first derived set E^ be countable, the set E is

itself count-able.

This latter follows from Theorem 2, while from Theorem 3 we
have the more general form of the same corollaries :

COR. 3. Those points of a set E which do not belong to any
derived set En are at most countable.

COR* 4. If any derived set En be countable th? set E is itself

countable.

22. More than countable Sets. If any set can be brought
into (1, 1^correspondence with a part or the whole of a count-

able set, its potency will be either a finite number or a. If,

however we arrange the set, when we set up a (1, ^-corre-

spondence between the points of a countable set pnd points of the

set, there arc always points of the set left over, the set may be



20-22] OF A CARDINAL NUMBER 43

said to be " more than countable." That such sets exist, is seen

by the following theorems.

THEOREM 10. The continuum in anysegment is more titan countable.

This may be proved in a variety of ways; the following is

Cantor's second proof*.

Suppose that the contrary were the case, and let the corre-

sponding numbers, arranged in countable order, be a,, a, Let

a be the number corresponding to the left-hand end-point of the

segment, and I its length. Using the decimal notation let

I

V"
a, a

0.

I

and so on.

If we now define a number b, by means of the equation

6 g_ ft
ILL

where b, is never the same as arr ',

then the number 6 will

certainly be different from all the numbers ar . But, since

lies between and 1, 6 is certainly a number corresponding to a

point of the given interval. Thus there is at least one number

left over, and the continuum is more than countable.

Cantor's first prooff was of precisely the form we shall now
use to prove the following theorem.

THEOREM 11. A countable set is never perfect.

For let the set arranged in countable order be

P P* 1 f 3l

and let us suppose, if possible, that it is perfect

Then if we take any interval d^ with Pj as middle point, since

P, is a limiting point of the set, there will be an infinite number
of points of the set inside d\. Let P be the first point in the

countable order, other than Plf which lies inside rf,, then all the

other points of the set which lie inside d\ have indices higher
than i. Pt is again a limiting point, since the set is perfect, so

that we can treat it as we did Pl . Let us then describe an

interval <,, less than half as long as <,, lying entirely inside rf,,

*
Jafretbericht d.d. m. Ver. i. p. 77.

t Jour. f. Math, LXXVII. p. 260 ;
Math. Ann. XT. p. 5. The proof is applicable to

n-dimensions.
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having Pt
- as middle point and not containing P,. Let Pj be the

first point in the countable order, other than Pit which lies inside

dy, so that j>i, and all other points of the set inside d3 have

indices higher than
_;'.

We then proceed with Pj as we did with

P,-. The process can evidently be carried on ad infinitum.

The infinite series of intervals dlt d?, ... lying each inside the

preceding and of less than half its length, defines a single limiting

point (Ch. Ill, Theorem 1), L, which, being a limiting point of the

given set, belongs to the set, since it is closed. Let it be Pk .

Then since Pk lies inside the interval c?a , therefore k must be

greater than 1
; similarly it is greater than i, and so on. Hence

the series of integers

(each of which is greater than the preceding) has a definite upper
limit k, so that there can be only a finite number of them, contrary

to the fact that, as we saw, there were an infinite number of them.

Thus the assumption was inadmissible, which proves the theorem.

While a countable set cannot by the above be both closed and

dense in itself, it can possess either of these properties without

the other. That it could be closed we have already seen. It is

evident from Theorem 8 that a closed countable set cannot contain

any component which is dense in itself, it will be shewn later* that

any set which contains no component dense in itself is countable.

On the other hand countable sets can be dense in themselves,

provided they are unclosed
;

the most familial1

example is the

following.

THEOREM 12. The rational points are countable.

For they can evidently be characterised by means of a system
of double indices, namely the numerator and denominator, so that

this theorem follows from Theorem 3.

THEOREM 13. The algebraic numbers are countable.

For these numbers can be characterised by means of a triply

infinite system of indices, viz. (1) the rank m, which is the degree
of the defining equation

(2) the integer n defined by the equation

(3) since the number of algebraic numbers for given m and /i

is evidently finite, the number p which defines the place of

the particular number under consideration among these, when

arranged in a predetermined order, for instance the order of

* Theorem 21, Cor. p. 56.
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ascending magnitude. The theorem is now a direct, result of the

Corollary to Theorem 3.

The rational numbers, and therefore the algebraic numbers

of which they form a component set, are dense everywhere. A
countable set that is dense in itself but nowhere dense is got by

taking the right-hand end-points of any set of non-overlapping

and non-abutting intervals, for instance those of Ex. 2, Ch. Ill, p. 20.

This set is dense in itself on one side only ;
the following is an

example of a countable set dense in itself on both sides and dense

nowhere*

Ex. 1. Take the segment (0, 1) of the y-axis, and

divide it at the point y\ into two parts, the lower

%, and the upper n, so that the ratio
y-^

*oi *n l ~h7i *-~J\i

where .A
= 1 - &

Next divide each of the two segments so obtained

in precisely the same way, j% taking the place of

i, where

and so on, jn being defined by the equation

The new points of division at the end of the second

stage we denote by y01 and y\i,ym lying in % and yn in

u ; the new points at the end of the third stage by yooj,

#01 1 > y101 y\\\ t
and 8 on. Moreover, the intervals them-

selves at the end of the second stage will be denoted

by *boi> *on,ioi> ui> and 3^01 will lie in ewit and so for

the others. The general law of division and notation

is now obvious t. The points of division are called

primary points. Then we assert that the set of primary

points is of the type required.
From the method of formation of the **s it is

evident that the suffix of the maximum segment at the

end of the (2m- l)th stage is (01)
m

,
and at the end of

the 2mth stage is (Ol)"
1
1. Also, whether n be even

or odd, the length of the maximum segment at the end

of the nth stage is . . <

4
A U\

'"\ 4.nV'
*

Proc. L. M. S. XXXJY. p. 287.

t The iudices of the new points of division introduced at the nth division are

such that, prefixing to each a dot, they are all the binary fractions involving
M binary places ; the last figure is therefore always a 1

;
of . Broden, Cntte, cxmr. ,

bottom of p. 22.



46 POTENCY, AND THE GENERALISED IDEA [CH. IV

1 4
which is always greater than

-j= -, but continually approaches this value as n
\ f> IT

increases. Since each of these maximum segments lies within the preceding

one, they form a sequence, and determine a definite interval within all of them,

free of primary points, and of length -^-. The ends of this interval (which
ir

might be called a ) are, however, never reached by the primary points ;

they are, in fact, limiting points of the primary set, but not included in it.

Again, starting with any one of the segments left after any number, say ,

of stages, we can shew in a precisely similar way, by considering the maxi-

mum segment in it obtained at each subsequent stage, that it contains

within it a definite interval, free of primary points (whose length is, however,

2/2
ao longer

-^ of its own length).
7T

Thus we have shewn that between every two primary points there is an

interval free of primary points, possessing the property that its end-points are

also not primary points. Moreover, every primary point it approached on both

sides by primary points.

Hence it follows that any given segment of the segment (0, 1) is either

entirely free of primary points or contains an interval entirely free of primary

points ; so that the set ofprimary point* is dense nowhere.

It is evident that the free intervals are the complementary intervals of a

perfect set of points having the primary points as a countable set among those

points of the perfect set which are limiting points on both sides.

We have purposely taken a definite numerical example, but we might

equally well write

where p is any integer, obtaining in this way a countable set of examples of the

type desired, namely, of sets of points nowhere dense and yet consisting

entirely of points which arc limiting points on both sides.

23. The Potency c. We have seen that no perfect set can

be brought into (1, ^-correspondence with any set which we have

so far measured, nor, by Theorems 2 and 3, into (n, ^-corre-

spondence, nor into (a, 1^correspondence, with any such set, where

n is any finite number and a the potency of a countably infinite set.

We shall now see that, in order to measure a perfect set we only
have to take the linear continuum itself as unit

;
in this way we

obtain a new potency, which is more than countable, viz. the

potency c of the linear continuum.

We saw (Ch. Ill, p. 22), that any perfect set which is dense every-

where in any segment consists of the whole continuum in that

segment, and that any perfect set which is dense nowhere in any

segment consists of the end -points and external points of a set of

black intervals which do not abut anywhere, and which is dense
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everywhere. The problem divides itself therefore into two sections,

which are treated separately in Theorems 14 and 15.

THEOREM 14, Any segment, open or closed, can be brought
into (1, ^-correspondence with any other segment, or with the

whole straight line.

That any two closed finite segments can be brought into (1, 1)-

correspondence is evident by projection. That any open segment
can be brought into (1, l)-correspondence with any closed segment
can be shewn as follows: let (A, B) be any segment, choose'out

any sequence having A as. limit, and set up such a correspondence
that every point of (A, B), except the points of this sequence,

corresponds to itself, but the first point of the sequence corre-

sponds to A, the second point to the first, and so on. In this way
the segment (A, B), open at one end, is brought into (1, ^-corre-

spondence with the closed segment (A, B). Similarly, the segment,

open at both ends, can be brought into (1, l)-corrospondence with

the same segment closed.

That the whole infinite straight line can be brought into

(1, l)-<?orrespondence with any finite segment can be shewn as

follows: take the segment (- 2, 2), and for all the points a; outside

the segment ( 1, 1) let us take the inversion

xx' = \\

for all points x from to 1, both inclusive, let

#'-1 = 1-0:,

and for all points x from 1, inclusive, to 0, not inclusive, let

x' + 1 = - 1 - x.

In this way the whole infinite straight line is brought into (1, 1)-

correspondence with the segment (- 2, 2) open at the point 2.

It follows that any segment, closed or open, finite or infinite,

has the potency of the linear continuum, and this we denote by c.

By Cantor's Theorem ( 20) we may denote the intervals of any

non-overlapping set by di, d^, .... Making dit whether open or

closed, correspond point for point to the segment ("I*"
1
, '!*) for all

values of i (cp. Ex. 1, p. 17), the points of any set of intervals with

or without some or all of their end-points, are brought into (1, 1)-

correspondence with those of the segment (0, 1). Thus the points

of any set of non-overlapping intervals have the potency c. Also,

since any finite or countably infinite set of end-points may be

omitted, the continuum ph'$ or minus any countable set of points

hax tie potency c.
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THEOREM 15. Any perfect set, denst nowhere, has the

potency c.

Let (A, B) be the smallest segment we can find such that

the whole set is internal to it. Then A and B are certainly

points of the set, since the set is closed, and limiting points, since

the set is dense in itself. It is plain, therefore, that A and
B cannot be end-points of black intervals of the s^.t, and are there-

fore external limiting points of those intervals.

Divide (4, B) into three equal parts at <7 and D. Then since

the black intervals are dense everywhere, either (C, D) forms part
of a determinate black interval or else there is a black interval

inside (G, D) and possibly coinciding with it. If the latter be

the case as in Cantor's typical perfect set where we have the

black interval ('02,
-

2), we choose some particular black interval,

for instance the largest possible, and denote it by d,. If the

former be the case, we denote by d
l
the black interval of which

(C, D) forms a part.

Since A and B are not end-points of any black^interval, there

will be two segments .left over, one on each side of rf,. . The end-

points of these segments will again be limiting points of the black

intervals in those segments, but not end-points of any of those

intervals
;
hence we may repeat the process in each of these two

segments, and choose out two new black intervals, which we shall call

rf i
and rfn . In Cantor's typical set, these will be ('002, -02) and

(202, -22). We are now left with four such segments, in each of

which we can repeat our process, and choose in each a black interval.

These we denote by dm ,
dm ,

dm ,
dm in order from left to right.

Proceeding thus, we use the terminating binary fractions (omitting
the point), as a general system of indices for our countable set

of black intervals. In the typical set the index of any black

interval is the binary fraction corresponding to its middle point.

This sets up a (1, 1^correspondence between the black intervals of

the general perfect set nowhere dense and those of Cantor's typical

perfect set, of such a kind that the order of the intervals with

respect to the continuum is maintained, and is the same as that' of

the binary fractions
;
that is to say if any binary fraction y lies

between two binary fractions x and z, dy will lie between dx and

dt ,
and vice versa.

One consequence of the mode adopted for determining the

indices is that, given any positive quantity e, we can determine an

integer m such that, for all values of n~& m, dyi <e (n being the
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number of places in the binary fraction N). For, by con-

struction, the two segments left on each side of dl are each less

than or equal to f (A, B), and at each stage a similar statement
can be made as to the length of the segments left over. Thus we
have only to determine m so that ($)

m
(A, B) < e, and this m will

certainly satisfy our requirements.

Since the order is maintained, it liow follows that any sequence
of intervals of the given set, defining a single limiting point, will

correspond to a sequence of intervals of the typical set, defining a

single limiting point, and vice versa. We can most easily express
this correspondence between the limiting points by denoting the

left- and right-hand end-points of any black interval , dm by

Pjayjoi and P(*n)t> *^e ibices being the numbers corresponding to

those end-points themselves in the typical case, and by denoting

any external point by Pg, where x is the ternary number belonging
to the limiting point of the corresponding intervals of the typical

set. In this way we have set up a (1, 1^correspondence between

the points of the general and typical perfect sets dense nowhere.

At the same time we have set up a correspondence between

the points of our set and the 'binary fractions, such that any point
P

(uf) corresponds to the binary fraction N (either terminating or

non-terminating). This correspondence is (1, 1) with a countably
infinite series of exceptions, namely both end-points of any black

interval will correspond to the same binary fraction. This corre-

spondence can be easily turned into one that is (1, 1) without

exception,, since th6 continuum in any segment can be brought

into (1, 1^correspondence with itself plus or minus any countable

set of points.

We thus see that the points of the perfect set have the pocency

c; indeed, since the end-points of the black intervals are like

those intervals themselves countable, the points of the perfect set

which are limits on both sides have by themselves the potency c.

Another way of stating this last result is the following: the external

points of a set of non-overlapping and non-abutting intervals have

the potency c.

Now any perfect set being given, we can determine all the

segments in which it is dense everywhere. Since the end-points

of these segments are points of the set, it is evident that no two of

these segments will abut, since two suqh would ipso facto constitute

a single segment in which the set would be dense. If there is any

segment left over, in it the set must be dense nowhere. If there

Y. 4
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are any points of the whole continuum in which we are working
left over, they must be limiting points of those segments in which

the set was dense everywhere or nowhere. If we now let every such

limiting point correspond to itself, and every point in any of the

segments in which the set is dense everywhere also correspond to

itself, finally if in any segment in which the set is dense nowhere

but not entirely absent, we set up a(l, l)-correspondence between

the points of the set and all the points of that segment, we

evidently set up a (1, 1^correspondence between the points of the

set and those of all the segments in which the set exists, so that

the potency of any perfect set is c.

In the course of this paragraph the following theorems have

been incidentally proved :

THEOREM 16. If a set can be divided into a set of potency c

and one ofpotency a or n, the potency of the whole set is c.

THEOREJM 17. If any set is part ofa set of potency c, and the

other part is countable, the set is ofpotency c.

COR. 1 . The irrational numbers in any segment have the potency c ;

and so have the transcendental numbers in any segment.

COR. 2. The Liouville numbers have the potency c.

For the Liouville numbers can be at once brought into (1, 1)-

correspondence with the irrational numbers together with some of

the rational numbers, by taking as corresponding to a Liouville

number

fr
I

g
|

e

10 101 - 1 101 - 3 -'

(where elt ea> ... are any of the figures 1, 2, ... 9), the number

-fL + A.. _!L
10 102 10s

"
1
"

24. These theorems can be expressed symbolically by means
of the following equations :

c+ n = c,

c + a = c.

The theorem proved about the equivalence of the potencies of

any two sets of non-overlapping intervals, may be expressed by
means of the equations :

nc= c,

ac c.
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The following correspondence between the non-terminating
binary and ternary fractions shews that

c . c = c* = c,

and at the same time brings out clearly the meaning of this

equation.

The nou-terminating binary fractions have the form

where the e's are either O's or 1's, and there are an infinite number
of 1's. These numbers represent the continuum from to 1, and
have therefore the potency c. The terminating binary fractions,

being rational, are countable. The same is true with respect to

the potencies of the terminating and non-terminating ternary
fractions. These latter may be divided up into five classes :

(A) those not involving the number 2
;

(B) those not involving the number 1
;

((7) those involving the number 2 only a finite number of

times;

(D) those involving the number 1 only a. finite number of

times
;

(E) those involving both 1 and 2 an infinite number of

times.

The numbers of class A are none other than the non-terminating

binary fractions, while B consists of the same fractions with 2

substituted for 1.

If y be a number of class
,
it is completely characterised by

giving the non- terminating binary fraction x got by omitting all

the 2's in y, and the terminating binary fraction E, got from y by

changing all the figures except the 2's into zeros and all the 2's

into 1's. Given y, there is one and only one corresponding .t;

given x, however, E being at our disposal, there are a countably
infinite set of y's. Thus we have a (1, a)-correspondence between

.the uon-terminating binary fractions and the numbers of class C.

{Similarly there is a (1, a)-correspondence between the non

terminating binary fractions and the numbers of class D; while

the correspondence of the former with the numbers of clas?

E is'(l, c), since E is in this case a non-terminating binary

fraction. .

Thus in each nou-terminating binary fraction there corresponds

one number from each of the classes A and B, a countably infinite

42
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set from f-ach of C and D, and a set of potency c from class E, in

all a set of potency

Thus wo have set up a (1, ^-correspondence between the non-

terminal og binary and ternary fractions, so that, the potency of

the binaries being c, that of the ternaries must be denoted by c . c.

In a similar manner the non-terminating fractions with base n

can be brought into(l, ^-correspondence with those of base (w-f 1).

Thus, by induction, c
n _ c

The only potencies at present known on the straight line are

a and c together with the finite integers. In the case of a closed

set it will be proved ( 27, Theorem 26, Cor. p. 56), that no other

potencies are possible, as well as in a very general type of open sets.

It has not yet been proved that an open set on the straight line

cannot have any other potency, although there is a very strong

presumption that this is the case. Before proceeding to the proof
of these theorems, it will be advisable to go more closely into the

theory of limiting -points in the light of our theory of potency, and

to develope a step further the theory of density in itself.

THEOREM 18. SCHEEFFER'S THEOREM*. If Q be a perfect

set, nowhere dense, and A a countable set, both lying on the same

straight line', then given any two numbers c' and c", there is at least

one number c, lying between c' and c", both inclusive, such that if the

set A be translated a distance c, no point of A will coincide witfi a

point of 0.

Let the points of A be denoted by A it A a ,
...

,
and let the

points distant respectively c and c" from A l in the same direction

be P and Q. Then,.since G is dense nowhere, there are black

intervals of between P and Q, or else the whole segment (P, Q)
is internal to a black interval of Q. In the former case, choosing

any one of these black intervals, and denoting the distances of its

end-points from A! by 7,' and <y", we have

c'<7/<7i" ;<>";

while in the latter case the signs of equality in the preceding
relation may be held to hold. In either case if we shift the set Q
any distance d in the direction PA lt provided

! will become internal to a black interval of G.

* L. Scheeffer, Acta Math. v.
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Similarly, taking A t instead of A lt and y/ and yt

"
instead of

c' and c", we get two numbers y,' and ya", where

such that shifting the set any distance d in the direction PA lt

provided

y,' < d < ya",

both AI and A z will become internal to black intervals of G.

Proceeding thus we get a sequence of ascending numbers

7/ 7/> each less than any number of the sequence of

descending numbers y/', y2", .... Thus the upper limit of the

former sequence being denoted by y' and the lower limit of the

latter sequence by y", we must have

/</',

and any number between y' and y" both inclusive will satisfy the

requirements of the number C in the enunciation, which proves
the theorem.

25. Limiting points of countable and more than
countable degree*.

DEF. If L be a limiting point, and d any interval containing L
as internal point, then, if d contain only a countable number of

points of the given set, the same will be true when we diminish d
as much as we please, as long as it contains L

;
in this case L will

be said to be a limiting point of countable degree. If this is not

the case L will be said to be of more than countable degree.

If a limiting point of more than countable degree be also a

point of the set considered we shall for shortness speak of it as

a point L'.

THEOREM 19. A set is countable, or not, according as it has

not, or has, a point L'.

Suppose that there is a point L'. Then it follows from the

definition of such a point that the set is more than countable.

Assume on the other hand that there is no point L'. Then

taking any point P of the given set E, we can determine Intervals

having P as internal point, and containing only a countably infinite,

or a fiuitc number of other points of E By Theorem 5 we can

replace all these intervals, determined from all the points of E, by
a countable set of them dlt d, .....

*
Cantor, Acta Math TII.
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Since in d{ there is only a countable set Et of points of E
not internal to dt , c?2 ,... di_,, we have in this way divided E
into a countable number of countable sets Elt E2 ,..., so /hat,

by Theorem 3, the set of points E is countable. Q. E. D.

This theorem may also be proved by the principle used in the

alternative proof of Theorem 5. (See footnote, p. 40.)

THEOREM 20. COR. Those points of E which are not points

L' are at most countable. If a set E has at least one point L', it has

a more than countable set of them; and the set of such points L
f
is

dense in itself.

For consider the set consisting of ft without the set of points

L 1

;
this must by Theorem 19 be countable. Hence, if the points

U are themselves countable, the original set, being the sum of

two countable sets, is itself countable, which is impossible if it

had one point L'.

It remains to prove that the set of points L' is dense in itself.

Taking any one point L', there must either in (A, L'), or in

(L', B), or iu both, be a more than countable number of points

of E. Suppose that this is the case in (A, L'). Divide up the

segment (A, L') as follows. Bisect it at >4,, then bisect (J.,, L')

at A*, then (A%, L') at A s ,
and so OB. We thus get a countably

infinite set of intervals (A, AJ, (A lt A a}, such that no last

interval exists, and such that L' is the sole external point in the

segment (A, L').

In one at least of these intervals there must be a more than

countable number of points of E, otherwise as before, there would

only, be a countable number of points of E in (A, L'). Let

(Ai, A i+1 ) be such a segment, then by the preceding theorem,

there must be a point U in it.

Treating the segment (Ai+1 , L') as we did the segment (A, L')

it follows from the definition of a point L' that it must contain a

second point L', lying, say, in the interval (Aj, Aj+1 ).
We next

take the segment (Aj+l , L'), and so on. In this way we obtain a

whole sequence of points.//', having as limit .that point L' with

which we originally started. Thus any point L' is a limit for

points of the same kind, that is to say the set of points L' is dense

iu itself. Q. E. D.

These results may be summed up in the following manner :

THEOREM 21. OF THE NUCLEUS. Every set which is more
than countable has a component, called the nucleus, consisting of all
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its points L'. The nucleus is dense in itself and more than count-

able, while the points of the set which are not contained in it are at

most countably infinite.

COR. Every set which contains no component dense in itself, is

countable.

This, which is true for all sets, is the fundamental theorem in

the case of an open set
;
in the case of a closed set, we can go a

step further.

26. Closed and perfect sets.

THEOREM 22. A perfect set is its own nucleus.

For, if P be any point of a perfect set E, then inside any
interval containing P there are points of E, which, with possibly the

two end-points, evidently form a closed and therefore a perfect set,

which, as such, is more than countable. Thus P is a point L',

which proves the theorem.

COR. Every perfect set contained in a given set is contained in

its nucleus.

THEOREM 23, The nucleus of a closed set E is a perfect set, and

contains every component ofE which is dense in itself.

For it is clear that any limiting point of points L' is itself

a point such that in any segment, however small, containing it,

there is a more than countable set of points of E
; also, since E

is closed, each such limiting point is a point of E, and therefore, by
definition, a point L'. Thus the nucleus is a perfect set

Further, any component of E dense in itself is contained in the

perfect set got by closing it, and since E is closed, this latter is

contained in E, and therefore, by the preceding corollary, in the

nucleus. Q. E. D.

27. Derived and deduced sets. We now proceed to shew

how a closed set may, by means of the familiar processes of

derivation and deduction, be analysed into its countable part and

its nucleus.

THEOREM 24. A II derived and deduced sets have the same nucleus.

For, by derivation and deduction, a perfect set is unaltered;

therefore, denoting by E* the nucleus of the first derived set

E', E* will be contained in every derived and deduced set, and

therefore in the nucleus of any one of them. That E* must be

identical with this latter set follows, since any derived or deduced
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tet is a component of E', so that any point L' of the former is a

point L' of E'.

COR. IfE be closed, E* is the mtcleus ofE itself.

THEOREM 25. Tlie sets of derived and deduced sets which are

distinctfrom one another are at most countably infinite.

For, as has been remarked, no two can be identical unless they

are perfect, in which case, by Theorem 22, each would be its own

nucleus, that is E*, and no further process of derivation or

deduction, would introduce a new set. Hence, as long as the sets

are distinct, we can assign one point of E', not belonging to E*,
to each successive set, and insure that no two sets shall correspond
to the same point. That is we set up a (1, 1^correspondence
between the different derived and deduced sets and points of a

set, which, by Theorems 19 and 21, is known to be countable,

therefore these sets themselves can be arranged in countable order.

Now as long as we do not arrive at a finite number of points,

the series of derived and deduced sets cannot leave off. If the

first derived set E' be more than countable, this cannot be the

case, since E* being perfect, is by Theorem 22 always present.

In this case, then, we must, after a countable series of operations,

arrive at a perfect set, containing E*, and, by the corollary to

Theorem 22, contained in E*, that is we arrive at E* itself.

Summing up we have the following theorem and corollary.

THEOREM 26. Every closed countable set can be reduced after

a, countable series of derivations and deductions to a finite number of

points, and every more than countable -closed set to its nucleus.

COR. Every closed set is either countable or has the potency c.

For unclosed sets the theorem corresponding to Theorem 25,

which has been also proved in the course of the preceding

paragraphs, may be stated as follows.

THEOREM 27. Every set, whose first derived is countable, leads

after a countable series of derivations and deductions to a finite

number of points, and every set, whose first derived is more than

cmmtable, to a perfect set E*.

E* is the nucleus of any derived or deduced set of E, and

contairis every component dense in itself of E, in particular the

nucleus of E.

This latter tneorem, which for some purposes is sufficient, does

not give us, as in the case of Theorem 26, an analysis of the given
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set into components, since neither the finite number of points in

the former case, nor the set E* in tjie latter case, are necessarily

components of E. Nor does it enable us in the latter case to

draw any precise conclusion as to the potency of an open set. In

the following section we proceed to develope the method devised

by Cantor for analysing open sets in a manner precisely analogous
to that used above for closed sets!.

28. Adherences and coherences. The term adherent has

been adopted by Cantor to denote, any isolated point of a set,

and coherent to denote any limiting point which is also a point of

the set
;
the set of all the adherents he calls the adherence and

that of all the coherents the coherence, and denotes these

symbolically by the addition .of a small a or c respectively to the

symbol used for the set itself; thus,

The adherence Ea is thus an isolated, and therefore a countable

set. If the set E is not dense in itself, there is at least one

adherent. Every component of E which is dense in itself is a

component of EC. The coherence EC may however contain other

points, each of which is then a limiting point of Ea. If, and only

if, E is closed, EC is tbe same as the first derived set E'
\ in any

case it belongs to E'. It will for some purposes be convenient to

speak of EC as the first derived coherence,

If there be no second derived set, EC will consist solely of its

own adherents, and the process comes to an end. Also if EC be

dense in itself, it consists solely of its own coherents, and the

process cannot by repetition lead to any new set. If, however,

there be a second derived set, and EC be neither an isolated set,

nor dense in itself, it will possess an adherence and a coherence,

and we may proceed in our analysis a stage further :

EC = Eca + Ecc
;

whence E = Ecc .-f Ea + Eca.

Here Ecc is contained in EC', the first derived of EC, but Eca
is not. Thus Ecc is contained in E", the second derived of E,
and we shall therefore sometimes speak of it as the second derived

coherence; it dpes not, however, follow that Eca is not contained

in E", or that it has not at least seme points common with E", or

with some subsequent derived or deduced set; all we know is thai

Eca certainly is contained in E', and we shall therefore sometimes

speak of it as ihe first desired adherence.
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Ex. 2. Referring to Ex. 3, Cb. Ill, p. 23 we construct our example by taking
the set Ti in the segment (0, 1). omitting all the limiting points of the first

order, that Is all the points

01, -Oil, -0111,

101, -1011, -10111,

1101, -11011, -110111,

and so on ; generally omitting every point 101*.

Here EC consists of Eca (viz. the limiting points of the second order,

1, -11, 'HI, )

and Ecc, which is the point 1, the single limiting point of the third order.

Thus Eca is entirely contained in the second derived set, which, as remarked,
is possible, although in the general case we can only assert that it is

contained in the first derived set.

Similarly, by adding to the above set a finite number of limiting points of

tire first order of T3 ,
we get an example where Eca has some, but not all, of

its points contained in E".

If, on the other hand, we also omit all the limiting points of the second

order of T3 ,
we get an example where Eca is itself the third derived set,

consisting of the point 1 alone.

On the same principle, using the set Tn ,
we can easily construct examples

in which Eca in wholly or in part contained in any of the derived sets up to

the nth.

If now Ecc be neither an isolated set nor dense in itself, we

continue our process, and so on. Each successive coherence and

each successive adherence, will be contained in each successive

derived set, so that we may speak generally of the nth 'derived

coherence or adherence, and the set E will consist of the nth derived

coherence together with all the derived adherences, up to ths

(n
-

l)th, and Ea.

Continuing the process, either (1) we get to a stage at which

the series of derived sets leaves off (i.e. the first derived E' is

countable), and therefore the series of adherences leaves off, and no

coherence is left at the end, or else we get to a stage at which the

latter series comes to an end but not necessarily the former, leaving
us either (2) with no coherence over, or (3) with one which is dense

in itself, or, finally, (4) all the derived sets exist, and corresponding
to each we have a definite adherence.

In case (4) we examine whether,, or no, we can " deduce
"
a set

from the infinite series of coherences

EC, Ecc, Eccc (1).

Since these sets are not necessarily closed, they may have no
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common point, although, the
corresponding derived sets being

closed, certainly determine a deduced set
;

if this be the case, the

original set E consists only of the countabJy infinite series of

adherences

Ea, Eca., JScca (2),

and is therefore countable and has no component dense in

itself.

Ex. 3. Consider the set constructed in Ex. 4. Ch. Ill, p. 24 and from this

set omit the point 1. The first deduced set still consists of the point 1 aloue,

but although for every value of n there is an nth derived adherence and

coherence, we cannot deduce a set from the coherences, since they have
no single point common.

If the deduced set of the coherences does exist, it consists

entirely of limiting points of every preceding coherence, and

therefore is contained in the first deduced set, just as the nth

derived coherence was in the nth derived set. We may therefore

properly designate it as the first deduced coherence. Any component
of E which is dense in itself will be contained in it.

If the first deduced coherence does not exist, it does not

follow that the set E has no component common with the first

deduced set.

Ex. 4. Take the closed set referred to at the beginning of Ex. 3, and omit

all its limiting points except the point 1, which, as we saw, constitutes by
itself the first deduced set. EC is identical with Eca and with the component
common to E and its first deduced set, viz. it consists of the point 1 alone.

If the first deduced coherence exists, E consists of it, together
with Ea and the derived adherences of every order

;
the former

alone of these is not necessarily an isolated Set, and, in particular,

contains every component of E dense in itself. We can then

analyse the first deduced coherence precisely as we did the set E,

forming, on the one hand, a series of adherences and coherences,

and, on the other, a series of derived sets, and continuing the

process, if possible, by deduction.

Proceeding in this way, either (1) the series of derived and

deduced sets comes to an end, and therefore, the series of ad-

herences comes to an end, and no coherence is left over, or else

the series of adhereuces comes to an cud, leaving us either,

(2) with no coherence, or (3) with one which i& dense in itself, or,

finally, (4) the series of derived and deduced sets docs not come

to an end (E
1

being more than countable), but leads, after a
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countable series of steps, to the set E*, while the series of ad-

herences does not come to an end, and there is a definite coherence

EC*, a component of E*f left over at the final stage.

In the following example EC* consists of a finite number of points.

Ex. 5. Let F, denote the set consisting of the middle points of Cantors

ternary set (Oh. Ill, Ex.- 2, p. 20), together with a unite number of points of the

latter set.

The set FI* is then Cantor^ set, and is the first derived of FI.

The points common to Fj and Cantor's seu constitute the first derived

coherence of YI ,
and at the same time the set F^*.

Similarly in each of the following examples Ed* exists, and consists of

the common points of E and E*, the set EC being in the successive cases

mure and more complicated in character.

Ex. 6. Let F2 denote the set obtained by inserting in each of the black

intervals of Cantor's ternary set a set similar to Yl and adding to these points
a finite number of points of Cantor's set itself.

Here the first derived coherence is identical, with Yyc*, which if the

component common to F2 and F2*.

Forming on this principle sets F3 ,
F4 in succession, we see that for

F the first derived coherence is identical with Fc*, which is the component
common to Fn and FB*.

It is evident that by using the sets FI, F2 ,
as we did the sets TI, T.2t ...

we can construct examples of a more and more complicated nature, illus-

trating the possibilities of the case
; for instance, the following :

Ex. 7. In the largest black interval of Cantor's set introduce a set similar

to Fj ;
in the next two largest a set similar to F2 ,

and so on
; finally, take a

finite num l>cr of points of Cantor's set itself. This set we call F.

The .set F* is reached at the first derivation, simultaneously with Fc*,

which consists of the common points of Fand F*.

These examples can be varied by taking, instead of FI, a set having, in

addition to a finite number of points of Cantor's set, in each black interval of

Cantor's set a set Tlt or Tn ,
or any of the more complicated sets

constructed by means of these. The set E* is then not reached till the

second derivation, or the nth, or some more remote stage of proceedings.

Again it is clear that EC* may not exist, and yet E may have

a component common with E*, as the following example shews.

Ex. 8. Take one of the last examples in which E* is not reached at the

second derivation, and omit all the limiting points except the finite number
of points belonging to Cantor's ternary .set. Here the first derived coherence

rind adherence are identical with the common points of .A'aihd E*^ and the

process of forming the successive adherences and coherences comes to an end

at the second stage, while the process of derivation leads to new sets, and

ultimately to E*. Similarly, by inserting .suitably a .sequence of points with

its limiting- point in one of the free intervals of the set last constructed, wo
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can form an example in which some, but not all, of the jioints of the final

adherence are points of the E*> while EC* does not exist.

If EC* exist, we can' recommence our parallel processes with it

as basis, analysing it into its adherents and coherents, and subjecting
it to the processes of derivation and deduction. If neither set of

processes lead us to a conclusion, we start afresh with Ec**
t
and

so on.

In this way we have before us a vista of adherences and

coherences, extending possibly beyond the range of the distinct

derived and deduced sets, as for instance in the examples (5) and

(6). The derived and deduced sets can, we know, be arranged in

countable order
;
we will now shew that the same is true of the

series of adherences in the most general case possible.

29. The ultimate coherence f. By Theorem 21 -\nd the

Corollary we know that a set is either countable, or has a nucleus.

In the latter case, by what has been pointed out, the nucleus,

being dense in itself, forms part of every possible coherence formed

in the manner indicated, and those points of the given set v, hich

do not belong to the nucleus arc countable.

Choosing then one point from each adherence we get a set of

points which is at once countable and in (1, 1 ^correspondence
with the adherences, thus the adherences are themselves countable.

Summing up, we have the following theorem.

THEOREM 28. Every set E which has no component dense in

itself, can be analysed into a countably infinite series of isolated sets

(adherences) ; and every set E which has a component dense in itself,

into such a series together with a single component U (the ultimate

coherence), dense in itself, and containing every component of E
which w dense in itself.

In particular, as already remarked, if E is more than countable,

U will contain a nucleus. If U does not coincide with the nucleus

it can be shewn, without difficulty, to consist of two' components,

(1) the nucleus, and (2) another component, dense in itself, no

point of which is a point L'. If E be closed, the ultimate

coherence, the set E* and the nucleus are all identical. If E
is not closed, the ultimate coherence is a component of E*. but, as

pointed out in the examples, does not necessarilv contain every

point common to E and E*.

t Cantor uses the terra total inhei ,-nce.
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30. This analysis of Cantor's is graphically illustrated in the

form of a "
tree," where F denotes any coherence

obtained from E, and U is the ultimate coherence.

It is of course allowable to start the tree at any

point of ramification we like, for instance at F.

Thus we see that any theorems which are true

of Ea and EC with respect to the subsequent ad-

herences and coherences, or the derived and deduced

sets of E, are true of Fa and Fc with respect to the

adherences and coherences subsequent to them in

the natural order, and the derived and deduced

sets of F. As to the relations of Fa and Fc and

the derived and deduced sets of F to the ad-

herences and coherences preceding F in the natural

order, we have pointed out in the examples that

the possibilities are of the most varied nature. hca Foo

Thus, if G denote any derived or deduced set
jrc

*
'1

of E, and F the coherence corresponding to it, we
have the following relations:.

(1) Fis contained in G;

(2) F' contains Fe, but not Fa, or .any point of

any adherence preceding F in the natural order
;

(3) G contains F', and therefore Fc, but may
contain some or all points of Fa, or of any adherence

preceding Fa in the natural order except Ea. The above state-

ments are then still true, if, instead of E, we start with any
coherence preceding F in the natural order.

THEOREM 29. Each adherence consists entirely ofpoints which

are limiting points of every adherence preceding it w the natural

order*.

That this is true for the derived adherences is easily seen, for

Ecu, being a component of EC, consists of limiting points of E,

(that is, of Ea together with EC), but no point of Eca is a limiting

point of EC, hence every point of Eca must be a limiting point of

Ea. Similarly each derived adherence consists of limiting points
of the adherence immediately preceding it in the natural order,

arid therefore, by induction (since limiting points of limiting

points are limiting points), of every adherence preceding it in the

natural order.

*
Quarterly J of M. cxxxvm. p. 115.
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That it is true of the first deduced adherence we may prove as

follows.

Let F denote the first deduced coherence. If P be a point of

F, but not a limiting point of Ea, it must be a limiting point of

EC; and, not being a limiting point of Ea, it cannot be a limiting

point of Eca, by the above, thus P must be a limiting point of Ecc

and so on. Thus P, being a limiting point of every one of the

derived coherences, is a limiting point of F, and therefore a point
of Fc-&nd not of Fa. Similarly, it we had started with any
derived adherence instead of E, as that of which P was not a

limiting point, it would follow that P could not be a point of Fa.

Thus every point of the first deduced adherence Fa is a limiting

point of every derived adherence. The above method of proof
is perfectly general, and may be extended, by induction, to any
adherence whatever, which proves the theorem.

31. Ordinary Inner Limiting sets. As already remarked

the theory of open sets is still so far imperfect that we cannot

say whether or no potencies other than the finite integers, a and

c, exist on the. straight line. The theory of density in itself,

however, as developed by Cantor, and given in the preceding

paragraphs* enables us to make the same assertion with respect to

a very general type of open sets, that we were able to make
with respect to closod sets, namely that potencies other than

those mentioned do not exist*. The sets in question are defined

as follows.

DBF. Given a series of sets of intervals, the set of all those

points such that each is internal to at least one interval of every

set of the series is called the inner limiting set of the series of sets

of intervals, or an ordinary inner limiting set.

THEOREM 30. Any inner limiting set can be defined by means

of a series of sets of non-uverlapping intervals such that each

interval lies inside an interval of the preceding set of the series,

possibly coinciding with this latter.

Such a series of sets of intervals will be called normal intervals.

We have seen (Ch. Ill, Theorem 4, Cor. p. 20), that the internal

points of any set of intervals determine a set of non.-overlapping

intervals of which they are the set of internal points. Having, in

this way, replaced the given sets of intervals by sets of non-over-

* "Zur Lehre d. nioht abgeschloasenen Punktmengen," Leipziger Berickt,

1903.
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lapping intervals, t.here may be an interval of the second set which

does not lie entirely in a single interval of the first set
;
in this case,

however, we only have to take, instead of that interval, the parts

of it which lie inside the different intervals of the first set
;
the

internal points common to the first and second sets do not in this

svay suffer any alteration. In this way we can modify the inter-

vals of each successive set till we get normal intervals.

LEMMA. If an ordinary inner limiting set is such that the

greatest length of its normal ^intervals at each successive stage

decreases without limit*, and also that we can assign a series of

constantly increasing integers r1} r,, ... and corresponding to these

an interval of the rjh normal set which contains two intervals of the

rh normal set entirely internal to them, each of which contains two

intervals of the rsth normal set entirely internal to them, and so on

then the potency of the inner limiting set is c.

To prove this, let us denote the normal interval of the r^h set

by dm ,
and the two intervals of the r*2th set which it contains by

c?ooi and dmt and, continuing this system of notation, let us denote

by dffn and dyiv the two normal intervals referred to in the

enunciation, which lie inside that already denoted bytf^j, where N
is any combination of zeros and ones with n figures. Since the

greatest length of the intervals at each successive stage decreases

without limit, every series of these intervals, one lying entirely

inside the other, defines a point of the inner limiting set. To
each such series of intervals, however, by our system of notation,

corresponds one and only one non-terminating binary fraction,

which, if dm be any interval of the series, begins with the figures

denoted by N; conversely to each non-terminating binary fraction

there corresponds such a series of intervals. Thus there is a

(1, l)-correspondence between all or some of the points of our

inner limiting set and the non-terminating binary fractions
;
since

the potency of these latter, is c, so is the potency of the former.

THEOREM 31. An ordinary inner limiting set which has a com-

ponent dense in itself has the potency c ; otherwise it is countable.

By the theorem of the nucleus (Theorem 21), any set which

has no component dense in itself is countable, therefore we only
have to prove the first part of the theorem.

Suppose the given ordinary inner limiting set to have a

component U which is dense in itself. Let P be any point of U,

* See footnote, p. 17.
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then there is a normal interval dn of the first normal set containing
P as internal point, and since P is a limiting point of U, there will

be another point Q of U inside dm . If at every stage the normal

interval containing P contains also Q, then every point between P
and Q will be internal to a normal interval at every stage, and will

therefore belong to the- ordinary inner limiting set, so that the

latter, containing all the points of an interval, has the potency c.

For tKe same reason if the length of the normal interval containing
P does not decrease without limit as the stages advance, the

potency will certainly be c, and the same is of course true of Q or

of any other point of the inner limiting set. We may therefore

now assume that the lengths of the normal intervals decrease

without limit. This being so, we can assign a stage at which the

normal intervals containing P and Q are distinct, and both are

entirely internal to dol . Denoting these by dm and dni , there will

be a component of U in each, the argument can be repeated, and

thus the conditions of the Lemma are satisfied. Thus the potency
of the ordinary inner limiting set is c if it has a component dense

in itself. Q. E. D.

COB. 1. Since the component of an ordinary inner limiting

set internal to any interval is itself an ordinary inner limiting set,

it follows that any point of an ordinary inner limiting set is of

degree c in the set, if it is not of countable degree.

COR. 2. The necessary and sufficient condition that a count-

able set should be an wdinary inner limiting set is that G should

contain no component dense in itself.

32. It has been asserted that the class of ordinary inner

limiting sets embraces a large class of open sets, it might have

been added that it includes all closed se+s. It remains to shew

that this is the case, and to give examples ;
we shall also be able

to give what ia almost an equivalent statement of Theorem 31,

but in a form for some purposes more convenient (Theorem 34).

It is often convenient to start with a given set of points E,

and describe intervals round each point of E, giving us a set of

intervals, and then to let the length of each interval converge
towards zero according to any law, giving us a sequence of sets of

intervals whose inner limiting set will/ by Theorem 1, Chap. Ill,

contain E. The following .theorem is then almost self-evident :

THEOREM 32. The inner limiting set consists of the chosen set

E together with possibly certain points of the first derived set St .

T. 5
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Suppose P to be a point of the inner limiting set not contained

in E. Then ws can assign an interval from each successive set

containing P as internal point, and each of these intervalscontains a

point of E. Since the length of these intervals decreases without

limit, it follows that P is a limiting point of points of E. <J. E. D.

THEOREM 3.3. Any dosed ?et is an inner limiting set.

Let us choose as set E any component set dense everywhere
in the given closed set (Chap. Ill, 11, p. 23), and take all the

intervals in each set of equal length, this length diminishing

without limit for the successive sets
;
also let the interval round

any point of E be described with that point as centre. Then,

since there are points of E as near as we please to any limiting

point of E, every point, of E will be internal to intervals of any

particular set, and will therefore belong to the inner limiting set
;

also by the preceding theorem none but points of E or El can

belong to. the inner limiting set, so that the latter will be the

given closed set.

THEOREM 34. The potency of the inner limiting set is the same

as that of El} the first derived of the chosen set E, unless E contains

no component dense in itself while El is more than countable.

This theorem is to all intents and purposes merely a restate-

ment in other words of Theorem 31
;
it is only not a priori obvio;i>

that a set, such as that mentioned at the end of the enunciation,

could lead to a countable inner limiting set. In the following

simple case, however, it is easily seen that this is the case. Take

the middle points of the black intervals of Cantor's perfect set

(Chap. Ill, Ex. 2, p. 20) ;
and describe ^ound each such point as

centre an interval of length en times that of the corresponding
black interval, where

is any sequence of positive proper fractions decreasing continually
with zero as limit.

The points of the first derived set, that is of Cantor's set, then

lie from the first outside all the intervals, which, as here con-

structed, are normal intervals. Hence the inner limiting set

contains no points of Elt aad consists only of the chosen count-

able set.

The following theorems shew that the above is true, not only
in the special case there considered but in the most general case.
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THEOREM 35 a. If E contain no component dense in itself, we

can no arrange the intervals that the inner limiting net consists of E
alone, and ifE^ is more than countable, we can so arrange the interval*

that the inner limiting set may be either countable or have thepotency c.

THEOREM 35 b. In general we can so arrange the intervals

that those points of the inner limiting set which are not points of E
are limitingpoints only of the greatest component ofE which is dense

in itself (i.e. the ultimate coherence of E, 29).

The proof of this latter theorem includes that of Theorem 35 a

as a special case, viz. when the ultimate coherence U is non-

existent. .

Having arranged the adherences in countable order (Theorem

28), let us arrange the points in each adherence also in countable

order, and let Py denote the jth point of the tth adherence A*.

Let us assume any finite positive quantity I.

Since A { contains none of its limiting points, we can assign a

definite, largest interval, of length not greater than I, say 2cy,

having Pv
- as centre, such that in it there is no point of A i} except

Py-; one or both of iH end-points may be points of A it or limiting

points of At.

The law of intervals which we take is that, round each point

Py as centre, we describe an interval of length dq for the first set

of intervals, and e"d,j for the nth set of intervals, where e is "any

assigned positive quantity, less than unity. The law of intervals

for points of U (if it exist) may be any we please.

Now, if there be any point of the inner limiting set not

belonging to E, it is, by Theorem 32, a point of the first derived

set Et .

Let Q be any point of E
1
which is not a point of E. If Q be

not a limiting point of U, it must, by Theorem 29, be a limiting

point of Ea, and may be a limiting point of other adherences.

Let Ai be any adherence of which Q is a limiting point ; then, by
Theorem 29, Q is a limiting point of every adherence preceding A {

in the natural order.

Hence, by the construction, Q is external to all the intervals

dij whose centres belong to Ai, or to any adherence preceding A,
in the natural order.

Thus, if Q be a limit for every A it Q cannot be a point of the

inner limiting set without remaining always internal to intervals

described round points of U, which it cannot do, if it be not a

limiting point of U. If Q be not a limit for every A it we must,

52
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by Theorem 29, be able to assign an integer h, such that Q is a

limiting point of Aj,, but not of any adherence subsequent to A^
in the natural order. Let A t denote the next adherence after Ah
in the natural order. Then we can assign a definite largest

interval, of length say I), with Q as centre, such that inside this

interval there is no point of A { , and therefore, by Theorem 29, no

point of any adherence subsequent to A t in the natural order.

Let us now determine an integer in, so that,

eml < D,

then, for all values of i and j,

(Pdij < D ;

therefore Q is external to all the intervals emdij
of the wth se.t of

intervals whose centres Py belong to adherences subsequent to A^
in the natural order. Also, since Q was shewn to be external to

all the remaining intervals of the wth set whose centres are not

points of U, it follows that Q cannot be a point of the inner

limiting set without being a limiting point of ?7; which proves
the theorem.

In reference to the above theorems it is to be remarked that

although we can so arrange the intervals as to include all the

limiting points, and under certain circumstances, so as to include

none of the limiting points, there are a great variety of other

possibilities. When the intervals of the individual sets have

external limiting points, or when a normal interval from each

successive set has a common end-point, these points will certainly

be limiting points of the given set without belonging to the inner

limiting set, and we can use this property to exclude any particular

limiting point from the inner limiting set.

Ex. 9*. Take as set E all the rational points
"

of the segment (0, 1), and

f) '2-

describe round each point
r as centre an interval of length ^,

n being any

integer and e any positive quantity less than
-^,

where..
=1 f 3 qal f

The sum of the lengths of the non-overlapping intervals (Chap. Ill,

Theorem 4, Cor. p. 20), which these intervals exactly fill up, being certainly
less than the sum of all the intervals, is still less than

=*. ,. 2 eM

i**-
1^' r

IT'
a fortiori is less than 1.

*
Borel, Thtorie det Fonctiont (1898), p. 44. ,
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From this it is easy to see that there is a more than countable set of

points external to these intervals. For, if there were only a countable set,

Pi) Pit

we could assign any positive quantity t less than
(
1 -

J
and describe

round each point p< an interval of length
-~

; adding these intervals to the

original intervals, every point of the segment (0, 1) is internal to these

intervals ; therefore the equivalent non-overlapping intervals must amal-

gamate into the whole segment (0, 1), whose length would however be greater
than the sum of the equivalent overlapping intervals, "which is impossible.

The set E of the rational points being dense everywhere, we see that this

shews that a more than countable set of the limiting points of E does not

appear in the inner limiting set. On the other hand, by the general theory,
we know that the inner limiting set has the potency c, while JEis countable;
hence a set of limiting points of potency c is introduced into the inner

limiting set of the intervals described round the points of E.

We can, in fact, shew that all the Liouville points (Chap. I, 7, p. 8), which,
as we know, have the potency c (p. 50), belong to the Inner limiting set. For,
x being a Liouville number, there are an infinite number of rational numbers

,
such that

. 1

we can therefore determine such a rational number with denominator greater

than 5- ,
in which case

P<- *

so that the point x will lie inside the interval of length
-

$
described round

- as centre. Thus, corresponding to each integer n, we can assign one of the

intervals in which x lies, so that A- is a point of the inner limiting set, and

this latter includes all the Liouville points.

33. Generalised inner and outer limiting sets *.

DEF. If (?!, Gt ,
... be a series of sets of points such that, for all

values of
,
Gn contains (?+i and G be the set of all the points

common to all the sets Gn , G is called the inner limiting set of the

series, or shortly a generalised inner limiting set.

* The terms greatest common factor and leant common multiple of sets, used by

Cantor and others for the set of all the common points and all the points

respectively of any set of sets, have been purposely avoided as misleading. The

term sum, which is occasionally nsed for all the points of any set of sets, is

restrained by authors who use the above terms for the case when the sets have no

common points.
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The process of forming a generalised inner limiting set has

already been used and called deduction, and the set itself the

deduced set.

Here if Gn consists of a set of open intervals (each interval

being considered as not including either of its end-po ts), G is an

ordinary inner limiting set.

If Gn consist of a set of intervals, each of which may be

closed, or may include one or neither of its end-points, G differs

only by a countable set from the inner limiting set F of the

same intervals considered as including none of their end-points.

For it is clear that G will contain F, and, if P be any other

point of G, P must, after some definite stage, be a common end-

point of a normal interval at each succeeding stage ;
since the

number of normal intervals ao each stage is countable, and also

the number of stages is countable, the number of such end-points

is countable, and therefore the points of G which are not points of

F, if any, are countable.

DBF. If 'G,, G3 , ... be a scries of sets of points such that, for

all values of n
t Gn is contained in G^, and G be the set such that

every set Gn is contained in G. while every point of G belongs to

sorne definite Gn ,
G is said to be the outer limiting set of the series,

or shortly a generalised outer limiting set.

DBF. If Gn G2 ,
... be all closed sets, G is said to be an ordinary

outer limiting set.

Any countable set is an ordinary outer limiting set, since 6?,, Git

may be taken to be finite sets.

An ordinary outer limiting set has clearly the potency c

if it is not countable, since either one of the sets Gn is of

potency c, or else the difference (Gn Gn-j) being countable,

and G = G1 + G.,-G1 +... + Gn-G+ ...... , Discountable.

34. Sets of the first and second category. In connection

with the terms used in the preceding article it may be pointed
out that Baire's sets of the first category are none other than

generalised outer limiting sets, the defining sets Glt (?.,,... being

subject to the sole condition that each of them is dense nowhere.

Any set which is not of the first category is said by Baire to be of

the second category.

It follows from the definitions that the sum of any finite or

countably infinite number of sets of the first category is a set of the,

first category.
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The following fundamental theorem and corollaries with respect
to these sets are due to Baire*.

THEOREM 36. If G be a set of the first category, then in every

interval, however small, there is a point not belonging to G.

For let G1 be a set of the first category, and (?, , G,,... the

defining sets. Then in any segment d of the continuum there is

a segment ^ containing no point of $,, since (?, is deiise nowhere.

Inside S,, since Gt is dense nowhere, we can assign an interval 8,,

containing no point of Gt ,
and so on. The intervals o\, S^ ..., lying

entirely one inside the other, contain at least one point Q internal

to all of them, which point Q, not being a point of any Gn , i-s not

a point of G. Thus G has the property that in every segment d
of the continuum there is a point not belonging to G.

COR. 1. The continuum is not a set of the first category.

COR. 2. The complementary set of a set of the first category
with respect to the continuum (or any other set of the second category)
is a set of the second category.

This follows from Theorem 36, since the sum of two sets of the

first category is a set of the first category.

COR. 3. The complementary set of a set of the'first category
with respect to ike continuum is of potency c.

For since Gn is nowhere dense, so is the set Gn
'

t got by closing
Gn ,

and the complementary set of Gn
'

is a set of open intervals Dn .

The inner limiting set of the sets of intervals Dn is contained in

the set in question, and by Theorem 36 has a component dense

everywhere and therefore dense in itself; hence by Theorem 31

the set in question has the potency c. .Q. E. D.

Taking as fundamental set F any perfect set instead of the

continuum, we may define sets of the first and second category
with respect to F, and shall have properties of these s6ts and ofF
precisely analogous to those enunciated and proved for sets of the

first and second category and the continuum. Thus for instance,

corresponding to Theorem 36, we have the theorem, that in every

interval, however small, containing a point of F there is a point of

F not belonging to the set of the first category with respect to F.

All the properties in question can be most easily proved by

using the correspondence between a perfect set and the continuum

employed in the proof of Theorem 15, p. 49.

*
Baire, Stir let fone turn t de variable* riellet, 1899, pp. 65 67. The term tet of

the tecond category is used as equivalent to complementary set of a set of the first

category by Schoenflies, Bericht, p. 108, and Bernstein, Diuertation, 11.
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35. The following theorems shew how very general are the

classes of ordinary inner and outer limiting sets.

THEOREM 37 a. The set of all the points of any finite number

of ordinary inner limiting sets is an ordinary inner limiting set.

THEOREM 37 b. The set of ati the points of any finite number

of ordinary outer limiting sets is an ordinary outer limiting set.

In case (a) we only have at each stage to take together all the

intervals corresponding to all the given sets. This gives us a new

series of sets of intervals whose inner limiting set contains G. If

P be any point not belonging to (?, we can, since tb<; number of

the given sets is finite, assign a stage after which P is not internal

to any of the defining intervals. Therefore P is not a point of the

new inner limiting set, which is therefore G.

Similarly (b) can be proved, since the set consisting of all the

points of any finite number of closed sets is clearly
* a closed set.

THEOREM 38 a. An inner limiting set of a sequence of inner

limiting sets is an or-dinary inner limiting'set.

THEOREM 38 b. An outer limiting set of ordinary outer limiting

sets is an ordinary outer limiting set.

Let the sets defining Gn be Gnl , 6rn2 , ..., for all values of n.

For shortness, let me use the symbol < to mean "is contained in,"

and > to mean "
contains."

Then, when G is a generalised inner limiting set Gl > G3 .

Hence, if
{?,,, < G.^,., we can remedy this by taking, instead of G^ r ,

the common part of Gl>r
and G

2>r , which is clearly* also a closed

set and contains (?2 . Doing this for all values of r, G2jr
> G^ r+i,

and Git r >GZy r-

Doing this in succession for the sets defining G3 , Gt> ..., we get
the following table :

0i,i > 0i,2 > #1,3 > G
1>4
> ...... > (TI

V V V V V

2 1

V V V V V

03,1 >03>2
>0

:<>: >0|,4> ...... >&,

G.

Tl^is being so, consider the sequence of closed sets 6rM ,
6r.>

( j,

G
3<3 , ..., and let their inner limiting set be denoted by G'.

* Seo Chap. V, Theorem 7, p. 84.
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If P be a point of 0', it belongs to Gm,m >
for all values of m,

and therefore to Gm>nt f r all values of n >m, and therefore to Gm ,

for all values of m
;
that is, P is a point of G.

If, on the other hand, P is a point of G, we can assign an

integer m such that P is a point of Gm ,
and therefore of Gm^m >

for

all values of m
;
that is, P is a point of 6?'. Thus G is identical

'mth G', and is, as was asserted, an ordinary inner limiting set.

Next, if G be a (generalised) outer limiting set of outer limiting

sets, G! < Gt . If GJ>r > Ga>r ,
we can remedy this by taking, instead

of G2>r , the set consisting of all points belonging to at least one of

(r, >r
and G.^r, which is clearly* also a closed set and contained in

G.J. Doing this for all values of r, Gt>r < G^ r+1 and (?, >r < GV.I.

Doing this in succession for all the sets defining G3 ,
Gt , ..., we

get the following table :

A

A A A A A
G

3> i < G
3<2 <G3i3

< G
3>i
< < Gt

A

G.

This being so, consider the sequence of closed sets Gll} GXl

GK , ..., and let their outer limiting set be denoted by G'. If P
be any point of G't we can assign an integer m such that P is a

point of CT,,(M , and therefore of Gn ,
for all values of n > w; that is,

P is a point of G.

If, on the other hand, P be any point of G, we can assign an

integer m such that P is a point of Gm - Then, since Gy is an

outer limiting set, we can assign an integer r such that P is a

point of Gm,r-
If now m^r, P is a point of #,,*; but, if m<r,

P is a point of Gv>r : in either case, P is a point of G'.

Thus G is identical with G', and is, as was asserted, an ordinary
outer limiting set.

THEOREM 39. The difference of two closed sets is both an

ordinary outer and an ordinary inner limiting set.

First, to prove it is an ordinary outer limiting set. Enclose

the smaller closed set in a finite number of open intervals each of

length less than e. The points of the 'larger closed set left over

form a closed set. This closed set, as e describes a sequence

See Chap. V, Theorem 7, p. 84.



74 POTENCY, AND THE GENERALISED IDEA [CH. IV

with zero as limit, generates the difference of the two given closed

sets. Q. E. D.

Next to prove that it is an ordinary inner limiting set. Enclose

the larger closed set in intervals each of length less than e. By
Theorem 6, Chap. IV, a finite number of these suffice, which there-

fore cover up a finite number of non-overlapping segments. Let d

be any one of these segments : then the points of the smaller closed

set which lie in d form a closed set, inside the black intervals of

which lie all the points of the set in question which lie inside d.

Taking all such black intervals in all the segments d, we havo

a set of intervals containing the whole set in question. As we

diminish e, we get a series of sets of intervals each lying inside the

preceding, and each containing the set in question. The inner

limiting set of this series will therefore certainly contain the set

in question ; but, since each such set of intervals lies inside the

corresponding finite number of segments, this inner limiting set

is a component of the larger closed set, and contains no point of

the smaller closed set; so that the set in question contains this

inner limiting set. Thus the set in question is none other than

this ordinary inner limiting set. Q. E. D.

THEOREM 40. If we subtract a closed set front either an

ordinary outer or an ordinary inner limiting set, we still get an

ordinary outer or an ordinary inner limiting set.

In the former case the theorem is a direct consequence of

Theorems 38 and 3D. In the latter case the difference of the two

sets is the ordinary inner limiting set of the parts of the defining
intervals of the ordinary inner limiting set that are internal to the

black intervals of the closed set.

THEOREM 41. If we subtract an ordinary outer limiting set

from an ordinary inner limiting set containing it, the difference is

an ordinary inner limiting set; and, if we subtract an ordinary
inner limiting setfrom an ordinary outer limiting set containing it,

the difference is an ordinary outer limning set

The first part of the theorem is proved in precisely the same

way as the second part of the preceding theorem, only that, instead

of a single closed set, we have a sequence of closed sets each

containing the preceding, and therefore a sequence of sets of black

intervals each containing the succeeding.
To prove the second part we proceed as follows :

Let I),, Da ,
... denote the successive sets of intervals defining

the inner limiting set D, and let Pj, P,, ... denote the closed sets
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of which Dj, Dz , ... are the black intervals; also let Glt 0,, ...

denote the closed sets defining the outer limiting set G. The points

common to Gn and Pn clearly* form a closed set, sayKn , contained

in G and having no point common with D
; further, given any point

of G, not belonging to D, we can assign an integer m such that,

for all integers n greater than m, that point is a point of Pn (since

it is not a point of D), and an integer m' such that, for all integers
n greater than ni

f

,
it is a point of Gn (since it is a point of G) ;

therefore, if m" denote the larger of m and m', the point is a point
ofKnt for all integers n greater than m". Thus the outer limiting

set of the series of closed sets Knt each one of which evidently
contains the succeeding, is the difference G D. Q. E. D.

COR. If we subtract any countable set from an ordinary inner

limiting set containing it, we get an ordinary inner limiting set.

* See Chap. V, Theorem.?, p. 84.



CHAPTER V

CONTENT.

36. In this chapter we come to the second important metrical

idea in the theory of sets, that of Content. The potency of a set

is a metrical relation between one set and another in which the

individuals of the sets are regarded as indistinguishable. The

content of a set is one in which the individuals are regarded as

having a characteristic by means of which they become of varying

importance which must be taken into account
;
it is determined by

the relative position of these individuals but is independent of their

actual situations in the fundamental region.

The idea is a natural one when we start with intervals instead

of points or numbers. The distinguishing characteristic is here

apparent, the length of the individual intervals. The potency of

a set of intervals is instinctively felt to be an affair of minor

importance* ;
what interests us more is the relation of the intervals

to the linear continuum, not regarded as a collection of points (a

one-dimensional variety), but as a whole, capable of division into

parts comparable by means of finite numbers with itself, a variety

of zero dimensions.

Recalling the description and properties of a perfect set dense

nowhere, given in Chap. Ill, we recognise that Hie parts into which

the continuum may be divided are not exclusively segments. In other

words, if we begin by blackening out of the continuum a set of

intervals and continue till no more intervals are left, we shall not

necessarily in this way have exhausted the whole continuum, the

part left over is a set of points nowhere dense, and, if we regard
the intervals as open intervals, it is a closed set of points. From
this point of view the idea of the content of a closed set of points

* And is rigidly shewn by Cantor's theorem to hare the minimum infinite range
of variation viz. if not a finite number, the potency is that of the natural numbers.
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is an immediate extension of that of a set of intervals, and we
shall obviously so frame our definitions that the content of a set of
intervals together with that of the complementary closed set of points
in equal to the content of tfte segment of the continuum in which we
are operating.

37. We define the content Is of a finite number of -intervals to be

the .mm of their lengths. With this definition we see at once that

(1 ) The content f& t'.s- positive and lens than or equal to the length

I of the segment (A, B) (supposed finite), of the straight line in

which the set lies.

(2) If the content I& be less than l
n

,
then there exists a

complementary set of intervals, whose content It, is equal to the

excess of / over the content of the given set, i.e.

(3) If the content 7S is equal to I, there are no comple-

mentary intervals, and trice versa
;
in this case

(i) There are no end-points (except, of couise, A and B),
which do not belong to two intervals.

(ii) There are no points of (A, B) external to all the intervals.

38. Next consider an infinite number or set of non-over-

lapping intervals in the segment (A, B). What are the analogous
theorems to those just enunciated ? By Cantor's Theorem the

intervals are countable, and, from the proof given in Chap. IV,' 3,

it is evident that they can be arranged in order of magnitude, 8lt

82 ,
... and that, if (A, B) be a finite segment, given any positive

quantity e, we can assign an integer m, so that, for all values of

n > m, 8n < e.

39. Now the sum of any number of the intervals cannot be

greater than 1. There must, therefore, be an upper limit Is> less

than or equal to /, such that the sum of any finite number of the

intervals is always less than /$; it can be made as near as we

please to Is by taking sufficient of the intervals. That is to say,

given any e, we can find an integer m, such that, for all values
n

of n ^ in, /a < 28r < /a .

i

In the usual manner we express this fact in other words by

saying that the series

S8,= 8, + &. + ...... ad inf.
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is convergent, and has Ts for its sura. It we call the content of the

set of intervals. This evidently agrees with the definition of the

content in the case when the set contains only a finite number of

intervals.

It now follows that, given any small positive quantity a, we can

assign a small positive quantity e, such that the sum of all the

intervals of the set which are less tlian e is less than cr. Denoting
this sum by R (e), we have R (e) < a.

40. Having so defined the content, we see that (1) of 37 holds

as it stands for any set of non-overlapping intervals.

When 1$ = I, it follows from the meaning of this equation that

no complementary interval can exist (3).

That the converse (i.e. (2) of 37) is not necessarily true, is

well shewn by Example 1 (see below). It is however true, and is

proved in 41 that if the content I& is less than I, ttiere are always

points in more than countable number, external to the intervals, and

this fact is the proper generalisation of the statement (2) of 37.

In Example 1 it is evident that this is the case, since the closed

set consisting of the external and end-points of the intervals is

perfect (Theorem 15, Chap. IV, p. 48).

Ex. 1. Divide the segment (0, 1) into three equal parts, and blacken the

central part (-1, -2) using the ternary notation. The ternary numbers corre-

sponding to points in the black interval will then be those having the figure 1

in the first place.

Next divide each of the (31) unblackened segments into 32
parts, and

blacken the central part in each, viz. ('Oil, -012) find ('211, -212). The ternary

numbers corresponding to points in either of these blackened intervals will

then be those having the figure 1 in the second and third places.

Similarly if we next divide each of the (3 1) (3
2 -

1) uublackened segments
into 33 parts, and blacken the central part in each, the numbers corresponding
to the points in these black intervals will be those which have the figure 1 in

the 3 places after the first (1 +2) places.

Proceeding in this manner, at the (nth) stage we have (3 1) (3*!)...

(3H-i_ i) unblackened segments, each of which we divide into 3* parts, and we

blacken the central part. The numbers corresponding to the points in these

black intervals will then be those having the figure 1 in the n places after the

first - - - - t
places.

m

This process, carried out ad infinitum, defines a set of black intervals of

content It which is clearly given as follows :

3-1 . 3-1 /, _ 3*-l\ 3-1 &-_\
I*2

)
H '

3
'

3*

= 1 -Lt
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Denoting the above infinite product by /,,

Thus J < ft <.$>

More accurately,

Whence putting n 3,

2 8 17 . 2 8 26 2 8 17|
3' 9

'

19
'

3 '9' 27 3'9* "'

*tt<>r<i{S..
In this way /,. and Is can bo calculated to any desired degree of accuracy.

Using the ternary notation,

7j = -l 02 212 2000 01001 01 .......

There is however no interval of the segment (0, 1) which does not lie

wholly, or in part, inside one of the intervals so constructed. Thus by
Theorem 15, Chap. IV, p. 48, the external and end-points form a

perfect set dense nowhere. Adopting the convention already used in

Chap. Ill, Ex. 2 (Cantor's typical ternary set), that ternary fractions

having a terminal 1 shall be denoted in the alternative manner wi'th a

terminal 02, we may say that the corresponding perfect set of numbers

consists of all the numbers between and 1, with the exception of those

which, expressed in the ternary scale, have the figure 1 in each of the

n places after the first \n (n
-

1) places, for any and every integral value of n.

Ex. 2. Suppose that we are given any small positive quantity e, we can

construct on the principle of the preceding example a set of intervals dense

everywhere in the fundamental segment and of content less than . To do

this, we determine an odd integer m such that

T" ^^ ^tm-l

and we use the base m in our division in place of the base 3*.

Ex. 3. Instead of taking a definite base as above, we may take any
convergent infinite product

0< /=(! -Wl-AjMl-A,) ......... <i,

* The principle employed in the construction of Exx. 1 and 2 was nrst used by
H. J. 8. Smith, Proc. L. M. S. Vol. vi. 1870, who, however, always took the right
hand interval instead of the middle interval, so that the external and end-points do
not form a perfect set. The sets of points with which H. J. 8. Smith, and his

.successors before Cantor, were interested, were always countable sets, and the

object of their investigations was to find a countable set of points which could

not be shut up in a finite number of intervals, the sum of whose lengths is as
small an we please. The end-points of the above intervals, for instance, satisfy
these requirements.
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and, in the segment (0, 1), take first an interval rfj, of length X,, with neither

of its end-points at the j>oints or 1
;
then in each of the segments left on each

side of di perform a similar division, the new intervals having the ratio X 2 : 1

to the lengths of the segments in which they lie, and so on. We then have
for the content of this set of intervals

41. In these examples, the complementary set of points, being

perfect, has the potency c, and Theorem 15, Chap. IV, p. 48 shews

that this will always be the case when the intervals are non-

abutting, whether or no the content be less than that of the

fundamental segment. On the other hand the following theorem

gives us a connection between the potency of the complementary
set and the content of the set of intervals, without reference to

the descriptive properties.

THEOREM 1. If the content of a set of non-overlapping intervals

be less than that of the fundamental segment, the potency of the

complementary set of points is c.

Since the set consisting of all the external and end-points is

closed (Theorem 4, Chap. Ill, p. 19), while the end-points, like

the intervals themselves, by Cantor's theorem, are countable, it

is evidently immaterial whether some or all the intervals be

regarded as open or closed, the potency will be c, if the points are

more than countable. ( 23.)

Suppose, if possible, that they are countable, then we can

enclose the first point in an interval of length %e, the second in one
a

of length $e, and generally, the nth in an interval of length .

Z

In this way, choosing e sufficiently small, since the content of the

given intervals was less than that of the fundamental segment, we
should have enclosed every point of the fundamental segment in

a set of intervals the sum of whose contents would be less than

that of the segment itself; by the Heine-Bore! Theorem, however,
there would be a finite number of these intervals enclosing every

point of the fundamental segment ;
this is evidently impossible,

since the sum of their contents would be less than that of th c>
.

fundamental segment, whereas it must be greater, since they

certainly overlap. Hence the assumption that the points are

countable is inadmissible, which proves the theorem.

COR. However a segment be divided up into non-overlapp}'n<j

intervals, so that no internal point of the segment, or only a

countable number of such, is external to the small intervals, th$
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jsum of the lengths of the small intervals is equal to the length of
the segment.

42. Summing up then we have the following definition and

properties of the content as defined for sets of intervals.

DBF. The content Is of a set of non-overlapping intervals is the

sum of their contents.

(1) The content / is positive and less than or equal to the

length I of the fundamental segment (A, B).

(2) If the content / be less than I, then there is a comple-

mentary set of points ofpotency c.

(3) If the content I& is equal to I, there are no complementary

intervals; the converse is not true, since sets of intervals can.be

constructed having no complementary intervals, and of content /
less than any assigned positive quantity e.

It is to be noticed that the content of a set of intervals is -the

same, with this definition, whether, or no, some or all the intervals

are regarded as closed, or open at one or both ends. Also tiie

content of a given set of intervals is the lower limit uf the content of
a set of intervals containing the given set.

43. When the sum of two sets of non-overlapping intervals is

a set of non-overlapping intervals, it is evident from the definition

that its content is the sum of their contents. The sum of two

sets of non-overlapping intervals may however be a set of over-

lapping intervals. Now by the Corollary to Theorem 4, Chap. Ill,

p. 20, the portion of the fundamental segment covered by a set of

overlapping intervals, is identical with that covered by a certain

set of non-overlapping intervals. Since, in the theory of content,

we are dealing with division of the continuum into parts, it is

convenient to dsfine the content of any set of intervals to be that of
ilie, equivalent set of non-overlapping" intervals. With this con-

vention, however, we see at once that the content of the sum of

two sets of intervals is not in general the sum of their contents.

The contents of sets of intervals, however, obey quite a simple
addition theorem, which is as follows :

THEOREM 2. ADDITION THEOREM FOR THE CONTENT OF SETS

OF INTERVALS.

Griven two sets of intervals of content 7a and /,, and calling the

content of their sum /, and the content of the set of intervals consist-

ing of all their common parts I',

y.
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Lot us call the aquivalent sets of non -overlapping intervals Glt

Gt , G and G'. Take any small positive quantity e, and determine

a finite number of the intervals of GI and G, so that the sum of

the remaining intervals of G^ and (?, respectively is less than e.

Then the sura of the remaining intervals of (?i and (?a being less

than 2e, the same is true of the parts which the chosen intervals of

(r, and (?, have in common with the remaining intervals of the

other set Gt or (?,. Thus the sum of these two finite sets is a set

whose content differs from / by less than 2e, and the set consisting

of the common parts of these two finite sets is a set whose content

differs from /' by less than 2e. Denoting then by 0,, 0,, 0, ff, four

quantities lying between and 1, we may denote the contents of

the two finite sets by 1^ e6l , /, 2 ,
that of their sum by / 20,

and that of their common parts by /' 2e0
/

.

Now consider the finite number of intervals which are parts

of the chosen intervals of {?, but not of the finite intervals of (?, :

when these are added to the common parts we get the chosen in-

tervals of Gi ;
hence their content is II 2e0j /' + 2e0'.

But the same intervals added to the chosen intervals of G, give
the sum of the two finite sets of intervals, whence their content is

7- 2e0 -/, + *#,.

Equating these two values, since e is as small as we please, the

theorem follows.

44. In accordance with the principle enunciated in 35, we

regard the set of points left over when we have blackened out a

set of intervals from the fundamental segment, as a part of the

continuum comparable in regard to content with the other part and

such that the sum of the contents of the two parts is the content

of the whole. This leads us to the following definition, referring
for the present to closed sets only, that is, regarding the remaining

part of the fundamental segment as consisting of a set of open
intervals. The definition must however be regarded as equally

applicable when some or all of the intervals are closed, in which
case we get the content of an open set

; as, however, we do not in

this way get. the most general open set, we shall deal with the

content of open sets separately, this special case will then arise

in its proper place.

DBF. The content Ip of a closed set of points is the difference
between the content of thefundamental segment and that of the black

intervals* of the set.

See footnote, p. 19.
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With this definition the content of a closed set of points is

always positive or zero, and less than the content of the funda-

mental segment, and it lias two important properties, contained in

the following theorems.

TIIKORKM 3. The content I
t

. is the upper limit of the content of
closed components ofthe dosed set.

For the black intervals of the given set will be contained in

those of the component, while, on the other hand, we can form a

closed component of the given set having content as near as we

please to Ir in the following way :

Take any }>omt of the given set, enclose it in fa, small interval

of length less than some assigned small quantity e, the points

which are not internal to this interval nor to the black intervals

of the given set form a closed set (by Theorem 4, Cur., Chap. Ill,

p. 20) contained in the given set, and the content of its black

intervals differs from that of the given set by at most the content

of the added interval, that is by less than e.

THEOREM 4. The content /,, vt the lower Limit of the content of
a set of intervals containing tfw given cloaed set as internal points.

For such a set of intervals together with the black intervals of

the given set contain every point of the fundamental segment, so

that, by the Heine-Borel Theorem, a finite number from among
these two sets cover every point of the fundamental .segment, and
have in consequence content greater than that of the fundamental

segment. Therefore the surh of the contents of the set of intervals

and the set of black intervals is not less than the content of the

fundamental segment, that is the content of the set of intervals is

not less than that of the closed set which they enclose.

On the other hand we can construct a set of intervals contain-

ing the given set of points and having content as near as we

please to Ip as follows :

Given e, find a finite number of the black intervals of the

given set of points such that the sum of" the remaining black

intervals is less than e. These black intervals, in number finite,

leave over a finite number of intervals containing every point of

the given set of points, and of content less than If + e, since

together with the finite number of black intervals in question they
fill up the fundamental segment

45. THEOREM 5. If Ql
and (?, be two closed sets of points

having no point common, the set consisting of Qr and Gs together is

a closed set of content I equal to the sum of their contents 7j + 72 .

62



84 CONTENT [CH. V

For the points of (r, must, in this case, be internal to a finite

number of the black intervals* of (?,. Let these be rf,, <h, ...dr -

Then the black intervals of G consist of dr+l ,
dr+,,... together

with the black intervals of (?, not counting the parts external to

d^d^.^df. That is

l-I=l-I>-(l-dL -dt ...- dr) + dr+l

whence /=

THEOREM 6. If a closed set of content I contain a closed

Component of content J, it contains a closed component of content

I Je (where e is as small as we*please), having no point common
with tlte former component.

By the preceding lemma no closed component could have

content greater than I J.

Let e be any assumed small quantity, and let us shut up all

the points of the given closed component in a finite number of

intervals of content lying between J and J+ e. The points of the

given set which are not internal to these intervals form, as is

oasily seen, a closed set; if the content of this latter set were less

than TJe,vte could enclose all its points in a finite number

of intervals of content less than IJe, which together with the

intervals first described would form a set of a finite number of

intervals of content less than /, enclosing all the points of a closed

set of content /
;
which is impossible. Thus the content of the

closed component in question is not loss than I Je] which

proves the lemma.

THEOREM 7. ADDITION THEOREM FOR THE CONTENT OF

CLOSED SETS.

If GI and G2 be two closed sets of points of content /, and
J2 , (a) the set consisting of all the points common to GI and Gy

is a closed set, say G' of content I', and (b) the set consisting of all

points belonging to one or both of GI and G^is a closed set, say G
of content I. Further, (c) /! + /2

= / + /'.

For (a), if P be a limiting point of G', it is a limiting point both

of GI and 6?2 , and therefore a point of both, that is a point of G'
;

so that G' is closed.

(6) If P be a limiting point of G, it must be a limiting point
of ojac at least of GI and (ra , and is therefore a point of that one,

and therefore a point of (r; so t> at G is closed.

*
See footnote, p. 15.
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(c) By Theorem 6, G consists of the closed sot ^ and a com-

plementary component containing dosed sets of content as near

/ I, as we please, but not any whose content exceeds / /,.

Since this complementary component is also the complementary

component of G1

with respect to 0%, by the same theorem, it

contains closed sets of content as near as we please to Ia I't

but none whose content exceeds 72 /'. Hence / /]<=/., l'r

which is equivalent to the statement to be proved.

46. THEOREM 8. The content of a countable closed net is zero.

This follows from Theorem 4, since we can enclose the first

point in an interval of length \e, the second in one of length \et

and so on. Thus the whole set can be enclosed in a .set of intervals

of content less than e, where e is as small as we please.

COR. The potency of a, closed set ofpositive content is c.

Similarly we can prove the following theorem.

THEOREM 9. The content of a closed set is the same as that of

any one of its derived or deduced sets.

For the closed set consists of the derived or deduced set in

question, say G', together with a countable set of points. These

latter can as before be enclosed in a set of intervals of content

less than e, and the former in a set of intervals of content less

than /' and e, where /' is the content of G'. Hence the whole set

can be enclosed in a set of intervals of content less than /' + 2e.

But it cannot be enclosed in a set of intervals of content less than

/', because G' is a part of the closed set (Theorem 8, Chap. Ill,

p. 27). Hence by Theorem 4 the theorem follows.

COR. A closed set which is more than countable has the same

content as its nucleus.

The preceding theorem is a special case of the following :

THEOREM 10. The contents of two closed sets are equal if the

points of both which are not common to both sets are countable.

For, by Theorem 7, the common points form a closed set, whose

content, by an argument precisely similar to that used in the

proof of the preceding theorem, is equal to that of either of the

given sets.

47. The two fundamental properties of the content of closed

sets enunciated and proved as Theorems 3 and 4, could either of

them be taken as definition of the content, the other would then

follow, as well as the property that the content of the closed set is the
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difference between the length of the fundamental segment and the

content of the jblack intervals. The disadvantages of such a

definition will appear most clearly when we come to deal with the

content of open sots. Historically however the question is of

interest, since the idea of content, arising as it did from the theory

of integration, was originally connected with that of intervals, and

indeed with a finite number of intervals.

Riemann* may perhaps be regarded as the originator of the

idea of content, though it was H. J. S. Smith f who, in making
Riemann's proof of the condition of integrability rigid, first

expressly drew attention to the connection of the subject with

the theory of sets of points and introduced the idea but not the

name of Content.

HaiikelJ was the originator of the term content, and his

definition is as follows :

Divide the fundamental segment into n equal parts, and take the

sum of those parts which contain points of a given set of points ;

the limit of this sum when n is indefinitely increased and the size

of the intervals indefinitely decreased, is called the content of the

given set.

It has here to be shewn that the limit in question is definite.

The following proof shews at the same time that, in the case of a

closed set, Hankel's definition agrees with that adopted in 44.

Let d denote the norm at any stage. Take a definite small

positive quantity e, and determine the largest integer k such that

2kd < e.

Then, as d decreases indefinitely, k increases indefinitely ;
thus

we may assume that d is so small that the sum of the first k black

intervals of the set got by closing the given set differs from the

sum of all those black intervals by less than V, where e diminishes

indefinitely with d. Now the sum of those parts which lie entirely

inside any black interval d' lies between d'^and d' 2d. Hence
also the sum of those parts that lie inside the first k black intervals

lies between
Is e and It ef e.

These parts contain no points of the given set. The re-

maining parts, if any, which do not do so, must each lie inside

one of the remaining black intervals
;
this shews that their sum

*
Riemann, Ueber die Darstellbarkeit einer Funktion durch eine trigonometrisvhe

Reihe, Ges. Werke, 2nd Edition, p. 240.

t H. J. S. Smith, Proc. L. M. S. vi. p. 55.

Hankel, Math. Ann. xx. p. 87.
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is less than e'. Thus the sum of all those parts which do not

contain points of the given set lies between

It e' and / e,

where It is the content of those black intervals. It follows that

the sum of those parts which do contain points of the given set

lies between
If + e' and If + e,

where If is the .content of the set got by closing the given set.

Since e is at our disposal and can be chosen as small as we please,

this shews that the limit is definite and is the content If of the

set got by closing the given set.

Two things have to be noticed with respect to this definition.

The first is that if, as Hankel does, we omit the word "
closed

"
in

the definition, we get aa the content of the set that of the set got

by closing it. Now in the case of one particular open set we have

already adopted a definition of content in direct variance with the

Hankel definition, viz. in the case of an infinite set of intervals.

The definition we adopted of the content of a set of intervals is the

most natural one, and is indeed the only one of any conceivable

use
;

it would certainly not be reasonable to substitute for it the

content of the set of points got by closing it, which may be the

vhole continuum even when the content ef the intervals is as small

as we please. There would appear therefore to be no sufficient

reason for defining the content of an open set in the way that

Hankel defines it.

The second point is one to which Hankel Limself was the first

to direct attention : it is that if we omit the condition as to the

finiteness of the number of parts into which we divide the segment,
we do not, in the case of an open set, get to a definite limit, as is

evident by taking any simple example, for instance that of the

rational points, which, being countable, can be enclosed in a set of

intervals of content as small as we please, while the limit obtained

in Hankel's manner is always the content of the fundamental

segment. In the case of a closed set this difficulty does not

occur
; for, if the fundamental segment be divided into parts, finite

or infinite in number, in any manner, each of length less than r,

then, by Theorem 6, Chap. IV, p. 41, there will only be a finite

number of these intervals which contain the given closed set:

thus we get tho same limit, when r is indefinitely decreased, as by
dividing the fundamental segment into a finite number of parts.
Hankel himself pointed out the reason for the occurrence of this
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peculiarity ;
when the number of intervals is finite, all the limiting

points are of necessity internal to the intervals at every stage of

proceedings, but, when the number of intervals is infinite, this is

not the case. The question suggests itself, Which of the limiting

points can be cut out by a proper choice of the intervals, and what

is the effect on the content of the intervals so chosen ? That all

points can be cut out, except those which are points of the given

set, we know to be possible in the case of what we have called an

ordinary inner limiting set, and it is evident that it is only possible

in this case. These questions, which were not investigated till

quite lately, will recur later.

The definition of content adopted by Cantor is likewise based

upon Theorem 6 of Chap. IV. and runs as follows :

Round every point of the closed set describe a small one-dimen-

sional sphere of radius r, and calculate the content of the set of
intervals covered by these spheres; the limit of this content when r

is indefinitely decreased, is called the content of the closed set.

Here again we know by Theorem 6, Chap. IV, that the

set of intervals in question will consist of a finite number of

intervals only, and this is expressly stated by Cantor. If, however,

we apply this process to an unclosed set, we must, at each stage
of proceedings, enclose every limiting point in the one-dimensional

spheres, thus we shall again, as in Hankel's case, get a definite

limit, as r is indefinitely decreased, and this limit will be the

content of the set got by closing the given set.

The equivalence of Cantor's definition with that adopted in

44 may be proved in the following way.

Given r we can determine k, so that k is the greatest integer

for which

2kr<e,

where e is any assigned small positive quantity.

This determines e', where e' is the sum of all the black intervals

except the first k : here e' diminishes indefinitely with r, since k

increases indefinitely with 1/r.

Since the one-dimensional spheres overlap with thp black

intervals, their concent is certainly not less than 1 1$. The parts
common to the spheres and the black intervals have however a sum

certainly less than 2kr + e' or e + e'. Thus the content of the

spheres lies between I It and I Is + e + e
1

,
and has therefore the

definite limit I Is , the content as defined in 44.
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48. The point of view adopted by Hankel and Cantor, is, as

was pointed out, none other than that of regarding a closed set

of points as a special case of an inner limiting set, viz. when

there are only a finite number of intervals i|> each defining set.

The following theorems give the connection between the contents

of the sets of intervals defining any inner limiting set whatever,

and the content of any closed component of the latter set.

THEOREM 1 1. Given a countdbly infinite series A. D9 , '..of sets

of intervals, each of which contains only a finite number of intervals

such that each interval of Dn+l is contained in an interval of Dn

(with possibly one or both end-points common), there is at least one

point common to an intervalfrom each set; and the common points

form a closed set.

For, since the number of intervals in Dn is finite, the internal

and end-points form a closed set, and, by hypothesis, the -closed

set of points Dn+J is a component of the closed set Dn \ hence, by
Cantor's Theorem of Deduction (Theorem 5, Chap. Ill), the con-

clusion follows.

THEOREM 12. If to the hypothesis of Theorem 11 we add that the

content of each Dn is f/reater than some positive quantity ^g, the

.common pointsform a closed set of points D' of content ^g, so that,

by Theorem 8; Cor,., they have the potency c.

For, if possible, let the content be less than g, and let the differ-

ence be greater than e. Then we can enclose all the common points
in a finite set of intervals of content less than (g e). Out of the

set Dn let us cut those parts which are common to Dn and the

intervals just constructed : there remain over a finite number'of
intervals of content greater than e. The intervals so constructed

for successive values of n satisfy the requirements of Theorem 11
;

so that there is at least one point common to them, anti therefore

to the original sets Dny contrary to the assumption that all the

common points had been cut out. The assumption was then

inadmissible that the common points could be enclosed in a finite

set of intervals of content less than g. Q. E. D.

49. If we remove the restriction that the number of intervals

in Dn is finite, these conclusions are inadmissible, since the points
of Dn do not then form a closed set. The following simple example

proves this.
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Ex. 4. Let A*+i consist of all the abutting intervals between the points,

whose numbers in the binary scale are of the form 1* (n ^m) (Fig. 10). Here
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Let us determine a finite number of the intervals D
l>r such

M

that, the content of the remainder is less than
~i ',

and from each

end of each of these intervals (in finite number) Dlff let us cut off

1 e
a fraction ^-3 , ->- of its length. The sum of these pieces is less

p
than -, and therefore the finite number of curtailed intervals,

which we denote by /),', has content >g \e.

The parts of intervals D^ r which lie inside Z)/ evidently have

content >/a %e: choosing out a finite number of these so that

the content of the remainder may be less than ^, and curtailing

1 e
them at each end by a fraction

-^r-3 , f
- of their length, we get a

-*2

o
finite set of intervals D2

'

of content > g ^~ni tyin inside the

intervals D'.

Proceeding thus with each successive set of intervals, we
* P P

obtain from Dn, r
a finite set Z)n

'

of content > 5r ~"o~H'a^"-~o^'

a fortiori > g e, lying inside the finite set Z) w_,, for every value

of n. Applying Theorem 12 to these sets, we deduce that they
have in common a closed set of points of content > g e. By con-

struction these points are internal to the original intervals; which

proves the theorem.

THEOREM 14. Given an infinite number of sets of intervals, in

a finite segment (A, B} of length L, such that the content of each set

of intervals is greater than some positive quantity g, then a set of

points of potency c exists, which is interned to an infinite series of
these sets of intervals, and contains closed components of content

> g e, where e is as small as we please.

For consider the non-overlapping intervals having the same
internal points as any one of the sets IV Their content > g, and

therefore we can choose out a finite number of them whose content

is greater than g. Suppose this done for all the sets; then in each

set we have only a finite number of non-overlapping intervals.

Let the integer m be determined so that

mg*L<(m+l)g .....................(1).

Let us consider a group of n of the sets, where n is a sufficiently

large integer, later to be more particularly specified.
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The points of (A, B), if any, internal to at least two of these

n sets form a finite number of non-overlapping intervals, whose

content we denote by /,,. The points which are only simply

covered, therefore, form a finite set of non-overlapping intervals of

content > n (g /])n),
whence

n(g-Iltn)<(m+l)g;

therefore /,,> (1 -(m + l)/n}0 (2).

Let us choose an integer n' so that (m 4- l)/n' < \et
that is,

n'>2(wi + l)/ (3);

then /,,'> (l-\e)g..\ (4).

Grouping the given sets together in distinct groups of n, and

taking the corresponding sets of double non-overlapping intervals,

we have conditions exactly similar to those with which we started,

only that, instead of g, we have (1 $e)g.

To these new sets we apply the same reasoning as before,

taking, however, \e instead of e, and substituting for n an integer
n" such that n" > 4<(m + l)/e and grouping the sets of double

intervals in groups of n". The content of the double parts

corresponding to any such group being denoted by /s,n"> it follows

that

I*, n >(l-\e)(l-{e)g>(l-te~\e)g>(l-e)g ...(5).

There will, therefore, certainly be such parts for every one of the

groups, and they will, by the construction, be at least quadruply
covered by the original sets.

In this way we can always proceed a stage further: the sets of

intervals which we construct at each successive stage always have

content > (1 -?e) g. Returning to the equation (2), we see that

there will be a set of intervals* in (A, B) which are covered at

least doubly by the given sets and that this set of double intervals

has a content // greater than or equal to /]>n for all values of n,

/,' ^ g. Similarly, denoting by 72

'

the content of the set of in-

tervals in (A, B) which are covered at least quadruply by the

given intervals, Iz'^g\ and, generally, In'^g, where /' is the

content of the set of intervals which are covered by at least 2n

of the given sets.

Now, since the intervals corresponding to the content /'

certainly lie inside those of content I'n-i, we can apply

* There might, of course, be points of (A, B) eiternal to these intervals which
belong to two or more of the given seta, but they do not affect the argument.
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Theorem 13, since the content of each is certainly greater than

g e, which proves the theorem.

50. The following theorems shew that the intervals of the

preceding sections may be replaced by closed sets of points of

positive content. Our sets of intervals, when infinite in number,

become open sets of points. The' theorems about to be obtained

will contain the earlier ones as special cases.

The analogon of Theorem 11 is none other than Cantor's

Theorem of Deduction (Theorem 5, Chap. Ill) which may for

convenience be restated here :

CANTOR'S THEOREM OF DEDUCTION. Given a countably infinite

series of closed sets ofpoints, <?, , (?a such that each point of Gn+i

is also, a point of Gn , there is at least one point common to all the

sets, and the deduced pointsform a clossd set.

THEOREM 1.5. If to the hypothesis of the above Theorem we
add that the content of each Gn if greater than some positive

quantity g, the common points form a closed set G' of content ^ g ;

so that they have the potency c. .

'

If possible; let the content / of G' bo less than g. Denote

by Jj, /a , ... the contents of Glt G?, By Theorem 6 we can

find a closed component of Gif all of whose points are distinct

f~om those of (?', and whose content is I^ I' e, where e is a

positive quantity, smaller than some assigned quantity. This set

has in common with Gt a closed set, whose content, by Theorem 7

is. equal to 7j /' e + It

'

K, where K is the content of the

closed set constituted by G2 and the closed component of 6r, above

found, and is certainly less than /, . The content of this compo-
nent of Gz is therefore greater than I9 I' e; a fortiori, greater
than g F e.

la other words, we have found a component of (r2 which is

closed and has no points in. common with G', and whose content

is greater than g I' e.

We can therefore repeat the argument, and obtain in each

succeeding set such a closed component, each component lying
inside the one previously obtained. It follows then, by Cantor's

Theorem
of, Deduction, that there are points other than G'

common to all the given sets, contrary to the hypothesis. There-

fore &c. Q. E. D.
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51. Open Set*.

THEOREM 16. Given a countably infinite series (r, , G% ,
... of sets

of points such that the upper limit In of the content of closed

components in Gn is greater than a positive qiiantity g, the same for
all values of n, each set Gn being contained in the foregoing (?n _i,

then a set of points exists of potency c, common to all the sets, and

this set contains closed components of content greater than g e,

where e is as small as we please.

By the definition of /rt , we can find a closed component (?/ of

G! such that, its content being denoted by /,', /,' -^e <//</,;
and, for all values of n greater than 1, we can, in like manner, find

a closed component Gn
"
of 6?n such that, its content being denoted

Those points of G9
"
which belong to $/ form a closed set, whose

content is greater than J2 $e {e [since the set consisting of all

the points belonging to one or both of the sets (?/ and G2

"
is

a component of Glt so that its content is not greater than Ilt by
Lemma 3

; therefore, the content of the set common to (?,' and (?"

is greater than

/i i + /i-i-/i or /s-^eJe].

Let us denote this closed component of (ra by Cr8'. Then G3

'

is

contained in GI and has content greater than g e.

Similarly we can determine a closed component G3

'

of Gs

"
and

of G, t of content greater than g e; generally we determine suc-

cessively closed components of each Gn
"
and (r'n_i of- conteht

greater than g e.

Applying Theorem 15 to these sets Gn
'

,
the result follows.

THEOREM 17. Given an infinite number of sets of points Glt

Gs ,
... , components of a closed set of finite content* L, such that tfie

upper limit of the contents of the closed components of Gn is greater
than some positive quantity g, the same for all values of n, then an

infinite series of these sets exists, having in common a set of points

of potency c, the content of whose closed components has an upper
limit > g.

*
It will be seen that it is sufficient if L is the upper lir-it of the content of closed

sets in the whole set, which does not need to be closed ; this is brought oat in the
re-statement of this theorem as Theorem 20.
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Let us choose out a closed component of each set of content

greater than g, and let these be denoted by GI , G*, .... Let e be

any small positive quantity, and let the integer m be determined

such that

mg<L<(m+l)g (1).

Lst us consider a group of n of the closed sets 0', where n is a

sufficiently large integer, subsequently to be further specified.

The points common to any particular pair of the sets of the

group form a closed set of points (Theorem 7); therefore, since

the sum of any finite number of closed sets is a closed set, the

points common to at least two of the sets of the group form a

closed set : let us denote it by G^ w ,
and its content by 7J>n .

The points of Gl>n which belong to any particular bet of the

group Q' form a closed component of 6r1>n , whose content is there-

fore less than or equal to I
lt n ; by Theorem 6, therefore, there is

a closed set of content greater than g I
lt n , consisting entirely of

points belonging to no set of the group, except G'. Corresponding
to each of the n sets G' we can find such a closed component, and

they will have no common points ;
so that they form a closed set

of content greater than n (g I
lt n), by Theorem 7. Hence, by (1),

n (g Il>n)<(m+l)g; and therefore

/1>w >{l-(m + l)/n}<7 (2).

Thus the set Gi t n certainly exists, and has the potency c,for all

values of n greater than m-f L
Let us determine an integer n' such that (m + !)/' < %e, that

is,
' > 2 (m + 1 )(e. Then

/i,<>(l-^)<7 (3).

Grouping our sets G' together in distinct groups of n sets, and

taking the sets of points belonging to at least two sets of"each in

turn of these groups, say G", G,", . . .
,
we have the same conditions

as before, only the content of each closed set is now greater than

(1 -\e)g, instead of g.

Repeating on these sets the process just gone through, we
obtain sets of quadruple points of the original sets whose content

/,, n satisfies the inequality

/,, n > {l-(m + l)/n} (l-\e)g (4>

Thus sets #2, n, consisting ofpoints common to at least 2a

of the given

sets, certainly exist, and have the potency c, fur all values of n

greater than m + 1.
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As before (usiog |e instead of e), we can then determine n" so

that

This process can be continued ad infinitum, and at each stage we

see that there are sets Gr>n (consisting of-points common to at least

Zr of the given sets), ofpotency c, and of content greater than (1 e) g,

where e is as small as we please.

Now the set, in general open, consisting of all the points

belonging to at least 2r of the given sets is certainly contained in

the set consisting of all the points common to at least 2**-1 of the

given sets, and, by the above, these sets satisfy the other con-

dition of Theorem 16 (g e being substituted for g). Hence, by
Theorem 16, the result foUows.

52. The inner content. We have seen that, in the case

of an open set, the upper limit of the content of closed components

plays a most important rdle. In the lemmas and theorems re-

lating to open sets, enunciated and proved, this concept has to them

precisely the relation that content itself has to closed sets
;

it is

called the inner measure of the content or briefly the (inner) content

of the open set.

DEFINITION. The (inner) content of a set is defined to be the

upper limit of the content of its closed components.

The introduction of this term simplifies the statements of the

preceding theorems : thus Theorems 5 and
. 6 can be replaced

by the following simple proposition :

THEOREM 18. If a closed set G be the sum of two non-over-

lapping sets, one .at least of which is closed, the content of G is the

sum of the (inner) contents of the components.

Theorems 15 and 16 are replaced by the following :
-

THEOREM 19. The (inner) content of a generalised inner limiting
set is the limit of the inner content ofthe defining sets Gl ,Gt,...,Gn .....

COR. The (inner) content of an inner limiting set G of sets of

points G!, GZ, ..., each contained within the preceding is the limit of
the (inner) content of Gn ,

when n is indefinitely increased.

Theorem 17 is replaced by the following :

THEOREM 20. Given an infinite number of sets of points, com-

ponents of a set offinite (inner) content, the (inner) contents, of these

sets having a positive loiver limit g, then an infinite, number of
sets e\ciste, having in common a set of (inner} content ^ g.
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53. The (inner) content, o defined, is coitainly a magnitude,

and, in the case of a closed act, the (inner) content is the content

itself. Further it is clear that the inner measure of the content

has the same connection with the potency that the content of a

closed set has, viz. If tlie (inner) content be positive, the set has the

potency c. The (inner) content of a set which has not the potency
c is zero.

The question arises whether the (inner) content possesses all

the properties which we are accustomed to associate with the

term " content
"
as long as this term was confined to closed sets.

First, we ask, 7s the (inner) content of the num of two nan-overtopping

sets always equal to the sum of their (Inner) contents ?

All that has been proved in the preceding sections is that this

is the case provided the sum of the two sets as well as one of the

components is closed. We can, however, at once extend the result

to the case when the sum is open. In other words Even if the

sum of two non-overlajtping sets be open, its (inner) content is the

sum of their (inner) contents, provided one at least of the component
is closed.

For, if the content of the closed component be a, and the

(inner) content of the sum a+ b, we can, by the definition, find a

closed component of content a + b-e, where e is as small as we

please. The part common to these two closed components must

have content ^ a e, and ^ a [since, otherwise, the remaining com-

ponent of the first closed component would have (inner) content > et

and we could therefore find in it a closed component having no

point common with that of content a + b e, and these two together
would form a closed component of the whole set of content

>a&l
In the closed component of content a + b e there must then,

by Theorem 18, be another distinct component of (inner) content

^ b e and ^ 6. This being true for all values of e, it follows that

the (inner) content of the original open component is not less

than 6. But it cannot be greater than b, since otherwise we could

find a closed component which with the first given component would
form a closed set of content greater than a 4- b. Thus the second

component has (inner) content b
;
which proves the theorem.

Summing up the result so far, we have the following :

THEOREM 21. THE INNER ADDITION THEOREM.

The (inner) content of the sum of two non-overlapping sets, one

of luhich is closed, is the sum of their (inner) contents.

y. 7
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54. Two cases remain: The sura of two non-overlapping

open sets is (1) closed
;
or (2) open.

If we assume that what we have, for shortness, called the

(inner) addition theorem may be extended to open sets so that it

holds, or., still more shortly, that the (inner) addition theorem holds

in Case (1), it is easy to deduce that it holds in Case (2).

For, if / be the (inner) content of the sum, and a and b of the

components, we can find a closed component of the sum, of content

/ e, and this cuts out of the components two (open) sets, whose

(innei; contents, by the same argument as before, lie between a

and a e, and b and b e, respectively. The sum of these two

(open) sets, being closed, has, under the supposition that the

(inner) addition theorem holds in Case (1), content lying

between a + b 2e and a + b, but must be equal to / e. Since

this is true for all values of e, the result follows.

55. We are now left with the discussion of Case (1). By
means of the theorems already proved, we can reduce the

problem of determining whether in this case the (inner) addition

theorem holds to the following: Can the sum of two open sets, each

of (inner) content zero, be a closed set ofpositive content ?

To show this we proceed as follows :

Suppose, if possible, we have a closed set of content a + b + c,

and it can be divided into two open components, whose (inner)

contents are b and c respectively. In these open components there

exist closed components ofcontent b e and c e respectively, where

e is as small as we please ;
the content of their sum is then 6 + c 2e.

The remaining points of the whole set form a set, in general open,
whose (inner) content, by Theorem 21, is a + 2e, and which is

the sum of two non-overlapping sets, th.e (inner) content of each of

which is, by what has been proved, not greater than e. Hence, by
the usual argument, we can find a closed component of the whole

set of content a + e, which is the sum of two non-overlapping sets,

the sum of whose (inner) contents is not greater than e. With

respect to these sets we can now repeat the argument, using \e
instead of e, and so on. Ultimately, by Theorems 15 and 16 we
shall determine a closed set whose content is a, divided into two

non-overlapping components, both of whose (inner) contents are

zero.

With our present imperfect knowledge of open sets, it seems

impossible to assert definitely that such a case could not arise.

At present however no such case is known.
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In the next section it is shewn that the (inner) addition

theorem holds when one of the components is any set whatever

and the other component is any one of a large class of open sets.

THPOUEM 22. If the (inner) addition theorem holds whert one

of the two components is a set of a certain type, it is also true vdien

one of the components its the outer limit of sets of that type..

In other words, if, for every value of n, the addition theorem

holds ibr <? arid any other set On , it holds for G and any other

set 0. For let the sum of G and be H, and let On be the set

which added to Gn makes up H. Then, using the letters indis-

criminately for the sets arid their (inner) contents, Gn + On = II.

Now, as Gn increases towards G, On diminishes towards 0, each

On lying in the preceding On-,. Therefore, by Theorem 19, the

(inner) content is itself the limit of the (inner) content On -

Also Lt Gn+ Lt On = H ;
therefore Lt Gn + = H.

Now the (inner) content of G is evidently not less than the

- limit of Gn . Therefore G+O^H, the letters denoting (inner)

contents. But, evidently, G + O^H; therefore G + = H, the

letters denoting either sets or their contents.

Cou. 1. The (inner) addition theorem, holds when one of the

components is an ordinary outer limiting set, by Theorem 21.

Coil. 2. An outer limiting set which is the limit of a sequence

of sets each of which has the property that the (inner) addition

theorem holds for it and any other set whatever has for (inner)

content the limit of the (inner) contents of the sets of the sequence.

COR. 3. The theorem

Lt (inner) content = (inner) content of Lt

is true for a sequence of expanding open sets when the expansion
is due to the increase of a component for which the (inne)') addition

theorem holds.

TiiEORiiM 23. // the (inner) addition theorem is true when one

of the two components is a set of a certain type, it is also true wJien

one of the components is an inner limiting set deduced from an

infante series of sets of this type.

In other words, if, for all values of n, Gn +0 =Hn (the letters

being used indiscriminately for a set and its content), and each Gn
is contained in the preceding set (?_!, then G+0=^ff. In fact,

H is itself an inner limiting set, and therefore by Theorem 19 Cor.,

its (inner) content is

72
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COR. The {inner) addition theorem holds if one of the compo-
nents is an ordinary inner limiting set.

For an infinite set of closed intervals is a special case of an

ordinary outer limiting set, and therefore, by Cor. 1 to Theorem 22,

the (inner) addition theoiorn applies when one of the components
consists of the points belonging to such a set of intervals. Hence,

applying our present theorem, it holds for the deduced set of a

sequence of such sets of intervals. Q. E. D.

Applying the results of this section, we see that, if we keep

applying in any order Theorems 22 and 23 to any series of ordinary
outer or inner limiting sets, the sets so obtained must always have

the property in question.

We have thus already obtained a large class of open sets

possessing the property in question ;
we can, however, extend this

class still further. The class of sets for which the (inner) addition

theorem holds may, for shortness, be called the (innei') additive class.

THEOREM 24. If each of two sets which do not overlap belong
to the (inner) additive class, their sum also possesses the property in

question.

Let G! and (r2 be two such sets, and H any other set whatever.

Also let G be the sum of the two sets. Let the (inner) contents

of GJ} G2 ,
and G be denoted by 7,, 72 ,

and 7, and that of H by J.

Then, since Gl belongs to the class, we have at once 7, + 7, = 7.

,For the same reason Ii + J is the (inner) content of (Gl + H).
Hence also, since G2 belongs to the class, the (inner) content of

(Gj. + H) + G3 is I. + J+It , i.e., it is I + J. In other words, the

(inner) content of G +H is / -f J. Therefore, &c. Q. E. D.

THEOREM 25. If each of two sets one of which in a component

of the other lelwig to the (inner) additive class, so does their

difference.

Use the same notation as in the preceding theorem, G denoting
the larger of the two sets, and (?,, say, the component belonging
to the class. As before, 7=71 + 7a . We have to prove that G,

belongs to the class. Suppose this is not the case; then the

(inner) content of G +H must be greater than 7, + J, say 7a + J+ k.

But, by hypothesis, #, belongs- to the class
;
hence the (inner)

content of G
l + (G9 + 77) is 72 + J+ k + 7, , i.e., it is 7+ k + J. But

GI + GI is G, and G belongs to the class
; therefore the (inner)

content of Gi + G^ + H is I + J, therefore k must be zero.

Therefore, &c. Q. E. D.
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THEOREM 26. If a set belonging to the (inner) additive class

le divided into two components tfw sum of whose inner contents is

equal to that of the original set, each of the components belongs to

the class.

Let G be the set, GI and G* the components, U any other set

whatever. Denote the corresponding (inner) contents by /, Ilt JT8

and J. Suppose, if possible, that the (inner) content of Gi +H
be not Ii + J; then it must be greater than Il + J. Add the set

$2 to the set Gl + H. Then the (inner) content of the set

(Gi + H) + G3 would be greater than Il -\-I.i + J. But,. by hypo-

thesis, /j + /2
= /; therefore the (inner) content of the set

Gl +H+Ga would be greater than I + J; that is, the (inner)

content of the set G+H would be greater than I + J. But G

belongs to the class in question ;
therefore the- (inner) content of

6r+H is equal to /+ J. Therefore, &c. Q. E. D.

THEOREM 27. ADDITION THEOREM FOR THE (INNER)
CONTENTS.

If Gj and G2 be two sets of the (inner) additive clusf, of (inner)

content I
I
and /2 , () the set consisting of all the points common

to Gl and Gs is a set of this class, say G', of (inner) content I'; and

(b) the set consisting of all the points belonging to one or both of Gt

and G2 is a set of this class, say G, of (inner) content I; further,

For suppose the (inner) contents of the parts of Gl and $,
which are not common to be II nc and 72

-
y respectively. Then,

since the (inner) addition theorem holds for Gt , I? + (/! x) = /.

Similarly, since the (inner) addition theorem holds for GI,

Ii + (It y) I', whence

# = y = /! + J2 -/.

Also /' + (/! x) ^ /, ;
therefore /' < x, that is,

/'</, + /,-/ ........................(1).

Again, take in each component a closed set of content greater
than I

l e
) I^e respectively. Then the common part of these

closed sets lies in G', and has therefore content ^ I'. The set of

points belonging to one or both of these closed sets lies in G, and

has therefore content < /. Then, by Lemma 3,

however small e may be, that is,

r^it+1,-1 ........................(2).
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Comparing (1) and (2), we have

J1 + /8
= / + .P. Q. E.D.

Again, the (inner) contents of the parts of #, and Gt which art

not common are Ii I' and I* !', In fact, from the result just

obtained, we have x T. It at once follows, by Theorem 25, that

the sets 0, G, QI G', (?, G', all belong to the class in question.

Q.E.D,

The theorems which we have obtained enable us, starting from

closed sets, to .build up a very extended class of open sets,

possessing the property that the (inner) addition theorem holds

for any set of the class in combination with any set whatever. The

great generality of the class obtained suggests the possibility that

the (inner) addition theorem holds for all sets without exception.

We must be careful, however, not to jump to this .conclusion. We
have, at most, shewn that all known open sets belong to the class

in question. All the known operations employed on members of

the class lead to members of the same, class
;
in modern phraseo-

logy, they form a corpus. If we could assert that there were no

other open sets than those formed from closed sets by these

Processes, we should have settled, once for all, the difficult question
of the classification of open sets.

In connection with the class of operations made use of in this

section, the theorems of 34, Ch. IV, which bear also on the

classification of open sets, will b6 of interest, and are noeded in

what follows.

56. In Art. 55 I shewed that, in the discussion of the question

whether, or no, the (inner) addition theorem holds always, we might
confine our attention to sets of zero (inner) content. We may
remark that the general problem of classifying open sets may be

reduced to the corresponding problemfor sets of tero (inner) content*

In fact, if we take any open set of (inner) content a, two cases

at most can present themselves : either it contains a closed set of

content a or it contains closed sets of content as near a as we

please. In the former case the given set is the sum of a closed set

of content a and an open set of (inner) content zero
;
in the latter

case we may first subtract a closed set of content a e, and so

obtain an open set of content e
;
in this latter set we may subtract

a closed set of content e', where e' is as small as we please ;
and

so on. We thus get, by successive subtraction of closed sets,

a series of open sets, each lying inside the,preceding and having
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zero for the lower limit of their contents; their deduced set is

therefore either altogether absent or has content zero. Iii the

former case the given open set is an ordinary outer limiting set
;

ui the latter case it is the sum of aa ordinary outer limiting set

and a set of zero (inner) content. In other words, we have the

following theorem :

Every set of (inner) content a is eit/ter a closed set or an

ordinary outer limiting set, or is equal to the sum of one or other

of these and of a set of zero (inner) content

As the properties of an ordinary outer limiting set may be

regarded as known, this theorem confirms the statement madeO *

above as to the classification of open sets.

57. The (Outer) Content. The definition adopted makes

the (inner) content of an open set depend on that of a closed set
;

moreover, we get as the (inner) content the content [for we shall

see that we can here suppress the term (inner)] of a certain

ordinary outer limiting set contained in it. If we attempt to give
a definition of content equally applicable to all sets of points, we

are met at once by difficulties which might seem to be insuperable.

The ordinary definition of the content of a closed set is, as

we saw, equivalent to the following : Describe little intervals of

constant length e round the points of the set : these fill up a

finite set of intervals the content of which is, in the limit, when e

is indefinitely diminished, the content of the closed set.

If this definition be applied to an open set,- it gives us, as we

saw, the same content as that of the set gof by closing it, and thus

fails to distinguish between the set and its component.
In the definition giv6n of the content of a closed set it is,

however, unnecessary to take the intervals all of the same length :

not only so
;

it is not necessary to specify that they have a positive

lower limit. In fact, if round every point of a closed set we describe

a little interval, say < e, according to any law, it is clear that the

content of such a set of intervals is not greater than it would be

if each interval were (if necessary) extended, until the correspond-

ing point of the closed set is its middle point and its length is 2e.

When e describes any sequence with zero as limit, the content of

these extended intervals approaches as limit the content of the

closed set. Thus the limit of the content of the original intervals

is not greater than the content of the given closed set. But by
Theorem 4, neither is it less than that content. Thus the limit
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of the content of the set of intervals constructed, when e is indefi-

nitely diminished, will be the same quantity as before.

If we try to apply this modified form of the definition of the

content of a closed set to open sets in general, we are met by
a similar difficulty to that which occurred before. Whereas in the

case of a closed set no other points are left in ultimately, when e is

indefinitely diminished, this is not true of open* sets, unless they

belong to the class of what we have called
"
ordinary inner limiting

sets." Thus, if it be legitimate to ascribe content to an ordinary

inner limiting set and to define it in this manner, the process in

question, when applied to an open set in general, would give us

the content of an ordinary inner limiting set of which it is a

component. The content, defined in this manner, is called the

oider measure of Hie content, or, briefly, the "
(outer) content."

J)EF. Round every point of the set G describe an interval;

find the content of the set of intervals so formed
;
this content has

a lower limit for the various possible modes of construction ;
this

lower limit is called the (outer) concent of the set of points.

It is easily seen that Theorem 18 holds if for (inner) we

substitute (outer). Corresponding to Theorem 19 we have the

following :

THEOREM 28. The (outer) content of a generalised outer

limiting set is the limit of the (outer) content of the defining

sets (T!, (?.,..., Gn ....

Let Jn be the (outer) content of Gn and / of the outer limiting

set G, and let us denote the limit of Jn when n is indefinitely

increased by j. It is evident that, as each Gn is contained in the

following Gn+1 ,
the quantities Jn never decrease, and j is then-

upper limit.

Let us commence at such a set GI that, e being any small

positive quantity, j-e^Jn ^j, for all values of n, and let

*i + e.j + ...<e. Enclose Gn in a set of intervals of content less

than Jn + en ,
for all values of n.

Then the parts common to the (n l)th and nth sets of

intervals contain (?_!, -.and must therefore have content ^ Ju-i>
Thus, if we take all the intervals together which we have con-

structed, we have a set of overlapping intervals containing every

point of G, and their content is less than or equal to

(J, + e^-KJ,- J, +A)+ +(/- Jn-i +O + -..,

* For a discussion of the points which mast come ip, see 29.



57-58] CONTENT 105

that is, less than j+ e. Thus J <j -\ e. But J cannot be less

than j ;
for otherwise we could enclose G in a set of intervals of

content less thanj, which is evidently impossible. Thus J**j.

Q. E.D.

It will often be convenient to denote the inner and outei

measures of the content by prefixing a subscript i or o; thus </

and I (inner / and outer /) will be used for the inner and outer

measures of the content of a set denoted by G.

THEOREM 29. If G be the set of all the points of two sets G,

and G2 without common points,

Enclose G in a set of intervals of content </+ 0e, and in G' 2

take a closed set of content </, ffe, where 6 and & lie between

and 1.

By the generalised Heme-Borel Theorem (Theorem 6, Chap. IV,

p. 41) the number of these intervals which contain points of this

closed set may be taken to be finite. Inside each of these intervals

the points of the closed set form a closed set, and the sum of tho

contents of these partial closed sets is, by Theorem 12, the content

of the whole closed set. Thus those points of the intervals which

are not points of the closed set form a set of intervals of content

1 + 6e i/2 + d'e, containing Gt . Since this is true for all

values of e,

K <* ^ 0M

or Ji + if**J ...........................(1).

Again, in G take a closed set of content */ Be, enclose (r, iu

a set of intervals of content o/i + Pe.

The points of this closed set not internal to this set of intervals

form a closed component of (?, of content x ^ t-/a . By Theorem 13,

therefore, the closed set contains closed components of content as

near as we please to J.Qe x, internal to the set of intervals

constructed. Thus

</ - 0e - x ^ o/j + O'e.

Since a?^ifa , and e may be made as small as we please,

that is Ji + Jt >J........................... (2).

By (1) and (2) the result follows.

58. Measurable Sets. For closed sets we know that (inner)
and (outer) content are merely different aspects of the same thing,
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the content of the closed set. A set for which the (inner) and

(outer) contents coincide is called a measurable set
;
for sHch a aet

we may, without scruple, use the term "
content."

It is evident that any definition of the content which agrees in

the loast with our fundamental ideas must make the content of a

set greater than, or at least equal to, that of any of its components ;

so that, if the (outer) and (inner) contents ever do not coincide

the former gives us an upper limit and the latter a lower limit for

the content. ^Thus, in the case of measurable set? no other defini-

tion of the content is possible.

Theorem 28 now gives us the following important theorem *.

THEOREM 30. If G be a measurable set, and G l
and G,

complementary components loith respect to G (that is G is the suttt,

of (?, and 6r.j)

Ji + iI**=I.

COR. If GI immeasurable, so is Ga , and the content of 6%, is the

difference of the contents of G and GI, viz. /, = //,.

THEOREM 31. The sum of any countable number of measurable

sets unthout common points is a measurable set, aud has for content

the sum of their contents.

Let the seta be #,, G2 , .... the number of them being finite or

countably infinite.

Enclose Gn in a set of intervals of content less than / +
->~ ,

for all values of n.

In this way we can enclose the set G, which is the sum of

GI, Git . . ., in a set of intervals of content less than e + J, + 1*+ . . ..

Also we can find a closed component of each set Gn of content

g

greater than In =- . The sum of these is a closed set, or an
IB

ordinary outer, limiting set, the inner measure of whose content is

greater than * + /, + /3 + ....

Since e may be taken as small as we please, this shews that

the outer measure of the
1

content of G is not greater than the

inner measure, so that G is measurable.

It also shews that

/-/,+!. + ...,

which proves the theorem.

* This property was taken by Lebesgue as the definition of the inner measure of

the content of a set in terms of the outer measure of the content of the comple-

mentary set with respect to the fundamental segment, supposed finite.
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THEOREM 32. ADDITION THEOREM FOR rax CONTENT OF

MEASURABLE SETS.

If Gl
and Gy are measurable fsetn of points of content /j and I%t

the set consisting of all the points common to G t and G9 is a

measurable set, say G' of content 1', and the set consisting of all

points belonging to at least one of 6r, and G^ is a measurable set,

say G of content I ; further I
I -f /.,

= / + /'.

We can find closed components of G, and '

of contents greater

than /,
- e and /, e respectively. By the Addition Theorem for

Closed Sets (p. 84), the sum of these contents is equal to the sum

of the content of the sets consisting of all their points and of their

common points respectively. The set of all their points is a com-

ponent of G, arid the set of their common points a component of

G' t so that the sum of the contents of these two sets is not greater
than </ + f/'. Thus

/l +/i -2e< i/ + <r.

Similarly, enclosing fir, and Ga in intervals, and using the

Addition Theorem for Sets of Intervals (p. 81),

Since e is at our disposal, it follows that

But, unless G and G' are measurable, I is greater than /, and

<>/' is greater than f/'. Thus the preceding relation is only possible

when the signs of equality are taken, and G and G' are measurable,

which proves the theorem.

COR. Tfte points of a measurable set ivldch do not belong to

another measurable setform a measurable set.

This follows from the above and the Cor. to Theorem 30.

59. From the point of view of an exhaustive classification of

open sets, it must be shewn whether sets other than measurable sets

exist. This point is still open to question. If there are other sets,

then, as will be shewn, all the ordinary sets are included in a class

which is included in the class of measurable sets, but may consist

of only a part of it : this class has itself the potency of all sets

in any segment finite or infinite, and, from the point of view of

content, possesses most important characteristics; this is none

other than the class of those sets which in combination with any
other set whatever are such that the sum of the (inner) contents

is the (inner) content, of the sum, and the sum of the (outer)



108 CONTENT [CH. V

contents is the (outer) content of the sum*. As we already have,

for deh'niteness, called the class of sets for which the (inner)

addition theorem' holds the (inner) additive class, we shall call

that for which the (outer) addition theorem holds the (outer)

additive class
;
the class above referred tu will then belong to both

these classes, and will be termed the additive, class.

Theorem 19 of this chapter shews that for an ordinary inner

limiting set the (outer) content coincides with the (inner) content ;

it shews, moreover, that, in the case of an ordinary inner limiting

set, however we construct the intervals round the points of that set,

the content of those intervals always approaches the same limit

when the intervals are decreased without limit, viz., the content of

the ordinary inner limiting set, provided ultimately no points are

left in except those of the given inner limiting set.

In the case of a set which is not an inner limiting set we cannot

so construct the intervals that no other points are left in, and there

might seem to be a certain degree of arbitrariness in the selection

of those points which are to be admitted.

According to the law of construction adopted, we may, as the

length of the separate intervals is indefinitely dec/eased, approach
the actual lower limit, that is the (outer) content, or some other

quantity lying between this and the content of the set got by

closing the given set..

If / be the (inner) content of a set, it is evident that the set

cannot be enclosed in a set of intervals of content less than /
;
thus

the defining property of measurable sets may be expressed by

saying that a set of (inner) content I is measurable if, and only if,

it can be enclosed in a set of intervals of content I +e, where e is as

small as we please. This property is, as we saw, possessed par
excellence by ordinary inner limiting sets. It is remarkable that,

as easily follows from Theorem 28, it is also possessed by ordinary
outer limiting sets, though, except in particular cases, an ordinary
outer limiting set cannot be defined as the inner limiting set of a

sequence of sets of intervals.

Thus we have the following theorem which is a special case of

Theorem 35, proved below :

An ordinary outer or inner limiting set is measurable, that is, if
its content be I, it can be shut up in an infinite set of intervals whose

content lies between I and I -\- e, and it contains closed compoiients

of content lying between I e and I, where e is as small as lueplease.
* This is, by Theorem HI, true of measurable sets in combination with meo&ur-

ul'le setB, but, perhaps, not with any *et whatever.
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60. The following .theorem proves that ail sets belonging to

what I have called the (inner) additive class are measurable.

THEOREM 33. If a set is such that when added to any other set

whatever which has no points in common with it the gum of tie

(inner) contents is the (inner) content of the sum, the set in question

is measurable

Let /! be the (inner) content of the set, and / be that of the

set of points required to close it, and 7 that of the whole set so

obtained; then, by hypothesis, / = II + 72 . As usual, let the sets

whose contents ;vre /
; /,, and /3 respectively be denoted by G, Gly

and Gt .

.Take a closed component Gz

'

of content > I, \e in (72 . The

set Gl lies, of course, in the black intervals of this set. Next shut

up the set G in a finite number of intervals di, d?, . .. dn ,
of content

In any one of these intervals dr , the points of Gt

'
form a closed

r=n

set, of content 7/ say, where 2 7/ > 7a ^ e.

r-\

The points of GI which lie in dr lie in the Wack intervals of

this closed component of G,', that is, in intervals whose sum is

dr If. Thus all the points of GI are enclosed in a set of intervals

whose sum is

2 [dr- //} < 7+ } .

- 72 -H $0 < 7, + .

i

This, therefore, proves the theorem.

It is easy to see that, if a set does not belong to the (inner)

additive class, we can no longer assert that it is measurable. Take,,

for example, a closed set of content a, and suppose it, if possible,

divided into two components which do not belong to the (inner)

additive class, so that the sum of their (inner) contents is less

than a. Then, if both these components are measurable, we
could enclose the closed set in an infinite set of intervals whose

sum is less than a, and therefore in a finite number of these

intervals
;
which is impossible. Thus at least one of the com-

ponents and therefore by Theorem 30, Cor., both the components
cannot have the property in question.

We have Bot, however, proved that, if there are sets which do
not belong to the (inner) additive class, they may not be further

sub-divided into those which are and those which are not

measurable.
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61. The properties which we have found for the (inner)

content have their exact counterparts for the (outer) content
;

so that we cannot say that either concept seems more funda-

mental than the other.

A set of (outer) content J is evidently measurable if, and only if,

it contains dosed components of content J e, where e is as small as

we please.

That this is the case when the set belongs to -the (outer)

additive class is shewn as follows
;
the theorem is the counterpart

to Theorem 33.

THEOREM 34. If a set be such that, when added to any set

whatever having no point common with it, the sum of the (outer)

contents is the (outer) content of the sum, the set in question is

measurable.

As before, let GI be the set, 6r3 the set required to close it, and

G the sum of (?i and G2 ,
and let the corresponding (outer) content?

be Ji, Jo, and J.

Let us enclose G in a finite number of intervals of content

lying between /and J+e, and Gy in a set of intervals of content

lying between J2 and J2 + e.

The points of the former intervals which are not internal

to the latter intervals form a closed set of content lying between

J J-ie and J Ja ;
that is, between J

l
~ e and Jl} by the

hypothesis. The points of this closed set which also belong to the

closed set G form a closed component of G, which, since it has no

point common with G2 ,
is also a closed component of G^ Let its

content be denoted by K\ then we can enclose it in a finite

number of intervals of content less than K + e, and these, together
with the intervals constructed round Gt contain all the points of

G
;
hence K

'

+ J, + 2e : Jj + J2} that is K ^ J, 2e, which proves
the theorem.

COR. The sets of the additive class are all measurable.

62. From Theorems 19 and 28 we have immediately the

following theorem :

THEOREM 35. An outer or inner limiting set of measurable

sets is measurable and has for content the limit of the contents of
the defining sets.

In particular we have the following special cases :

COR. 1. An ordinary inner limiting set is measurable and
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its content is the limit of itie content of the norm/il intervals

flefining it.

Con. 2. An ordinary outer limiting set is mevjurable and its

content is the limit of the content of itie defining closed sets.

In the special case when the ordinary outer limiting set is a

closed set dense nowhere, this is Osgood's theorem*. Another

important special case gives rise to the following corollary :

COR. 3. If G be the ordinary outer limiting set of a, series of
closed seta of zero content, every closed component of G has %ero

content^.

It may be noted that this indicates the existence of unclosed

sets, such that, though every closed set contained in them has

content as small as we please, every closed set containing them has

content as large as we please.

The simplest example of the kind is that of the rational points.

Let Gn here stand for all the proper fractions with n as denomi-

nator. Then G consists of all the rational numbers between

and 1. The content of Gn and therefore of G is zero: the set F got

by closing G is however the continuum from to 1, and its content

is therefore unity. This set is dense everywhere. By using the

(1, ^-correspondence given in 23, p. 46 however we may deduce

a similar set which is dense nowhere. The following is an example
of the same type obtained directly.

Ex. 5. Consider the following sequence of sets :

GI is H. J. S. Smith's ternary closed set \ of the first kind in the segment

(0, 1).

By means of repetitions of the processes by which #j was constructed iu

the segment (0, 1), we propose to construct a series of closed sets whose limit

<V, when closed by the addition of those limiting points not already included

iu it, is identical with H. J. S. Smith's ternary closed set of the second

* Amcr. Journ. xix. t Quart. Jottru. No. 138, 1903.

+ p. 79, footnote. The black intervals of this set are got by dividing a segment
into three equal parts, blackening the right-hand part ; then repeating this process
in each of the two white parts and so on. The construction for the closed set of

the second kind is similar, only instead of dividing at each stage into three, we
divide successively into 3, 33 , 3*, ... parts. The expression for the content of the

latter set is the same as that of Ex. 1, p. 78, viz.

The former set re of zero content. Proc. Land. Math. Soc. Vol. vr. p. 948 ; of. Proc.

Lttnd. Math. Soc. Vol. xxxiv. p. 286, footnoW, for the reason of the insertion of

the term "closed,"' i.e. the sec in question is that got by adding to H. J. S. Smith's

ternary set of the first kind its limiting pointu,
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kind. This latter .-set we denote by r. For this purpose the following should

be noticed :

(1) If we divide the segment in which an H. J. S. Smith's set of the first

kind is given into 3" equal parts, certain of them will be entirely black for the

et, and in each of the otbors there is an H. J. S. Smith's set of the first kind.

(2) If we divide the segment in which an H. J. S. Smith's Hot of the

second kind is given into 3*** parts, certain of them will be entirely black

for the set, and in each of the others the given set has precisely the name form,

though this form is not an H. J. S. Smith's set of the second kind, Ixxwise

the largest black interval in each part is not i of that part.

Having premised this, we proceed to the construction. (See Fig. 11.) The

largest black interval of Gl is the same as the largest black interval of r, and

r

o,

o-.'

Kg. 11.

in each of the two remaining segments (0, !) and (! to
-

2) in the ternary

notation, r has the same form, and G
l
consists of an H. J. S. Smith's net of

the first kind. We need, therefore, only consider what modification is

necessjiry in the segment (0,
-

1), the same modification being supposed made
in the segment ('1, ),

and the segment (-2, 1) being left unaltered. In the

segment (0, !) r has its largest black interval of length i,-^ on the extreme

right ; in all the other segments of the same length, (0, '0-1 )j &c., it has the

n 0'-' 022

FiK . 12.

same form, whereas 6^ has the form of an H. .7. S. Smith's set of the first kind
in only some of these segments', (-0

2
2, -01), (-012, '02), and ('02, '!) being

entirely black. If, however, in each of these three largest black intervals of
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O
l
we insert an H. J. S. Smith's set of the first kind, then the extreme right

hand segment (O22, -1) will be entirely black for the new set Oit and in each
.of the other eight segments #2 will consist of an H. J. S. Smith's set of the

first kind.

We can, therefore, as before, consider what modifications are necessary in

the segment (0, -0*1) only, the same modification being supposed made in the
other seven segments, and the segment (-022, '01) being left unaltered.

By a precisely similar argument as before, it is easily seen that, if we form
O3 by inserting in each of the three krgest intervals of (?2 an H. J. S. Smith's
set of the first kind, and G4 by inserting in each of the 32

largest intervals of

3 an H. J. S. Smith's set of the first kind, the extreme right-hand segment of

TO

G 8

01 0*1 on

length

Fig. 13.

('0
3
222, -0*1), will be entirely black, as it is for T, and, in all

, G* will consist of an H. J. S. Smith's setthe other segments of length

of the first kind.

The general law is now obvious. We shall only have to consider *.he

modifications necessary in <?i +1+3 +3+ ....., in the segment (0,
1+2+ - +

*l), in

which it consists of an H. J. S. Smith's set of the first kind, the same
modification being made in all the other segments of the same length except
those which are by our construction already black for r.

The modification will consist in inserting H. J. S. Smith's sets of the first

kind in the 3, 32
,
3s

,
... 3* +1 largest intervals in turn to form G. , .

Comparing this series of sets with H. J. S. Smith's ternary closed set of

the second kind, we see that, given any small quantity c, we can assign a

stage m in the series such that for all values of n> m all the black intervals

of <? which are > e are identical with those ^ of H. J. S. Smith's tertiary

closed set of the second kind. But the content of <? is always zero ; whije

that of H. J. S. Smith's ternary closed' set of the second kind lies between

J and .

The set G obviously consists of all the isolated points and limiting points
on one side only of H. J. S. Smith's ternary set of the second kind, together

r. 8



114 CONTENT [CH. V

with some of its limiting points on both sides. The set got by closing O it

therefore H. J. S. Smith's ternary closed set of the second kind
;
that is, r.

We will now prove that G does not contain all the points of r, and is there-

fore unclosed. To do this it is .sufficient to prove that the point

P= -1212212221...

(*here the right-hand side of the symbolic equation represents a ternary

fraction, the number of 2's between consecutive 1's increasing each time by

one), which is a limiting point on both sides of r (and a limiting point on one

side only of I*), is an internal point of a definite black interval of On for every

value ?t,and is therefore not a point of O. This intervalis('12,-2)ofGlt (-1212.-122)

of C?,, (-12122, -122) of <?3 , (1212212, -121222) of 4 , (-12122122, -12122)

of <76 , ('121221222, -121222) of <?6 , (-12122122212, -1212212222) of 7 , and

so on. The general law is now evident, and hence the assertion is proved.

Similarly it is evident that any ternary fraction of r which involves an

infinite number of 2's* cannot belong to any Ont since, apart from a finite

number of figures at the beginning, the numbers of On involve only the

figures and 1. Each such- point is a limiting point on both sides of F and

is interior to a black interval of Gn whose length diminishes indefinitely as n
increases indefinitely.

Hence the tet which we have constructed at the limiting set of a sequence

of closed sets, nowhere dense, is open, and has zero content while the content of

any closed set containing it is greater than\.

63. Corresponding to Theorem 20 we have now the follow-

ing:

THEOREM 36. Given an infinite number of sets of points,

components of a set offinite (outer)- content L, the (outer) contents of
these sets having a positive upper limit g, then an infinite number of
these sets exists, which can all be enclosed simultaneously in a set of
intervals of content < g + e, where e is as small as we please.

Jf more than a finite number of the sets have zero (outer)

content, the theorem is obviously true
,
we assume therefore that

this is not the case
;
then there is certainly at least one proper

upper limit g ^g such that, for all values of e, there are a more
than finite number of the sets whose (outer) contents lie between

g' e and g', both inclusive.

This being so, let us replace the sets by ordinary inner limit-

ing sets containing them, having the same (outer) content and

contained in an outer limiting set of content L^, and let Glt (?2 ,

G3> ... be a countable set of these ordinary inner limiting sets such

e*
that, if the content of (? be denoted by /, g'^In >g'

* Other than i>, of course.

+ It is easy to se how to do this ; we can enclose each of the sets in a set of

intervals of content wHhin e of its content, and the whole set in a set of intervals
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Then, since an ordinary inner limiting set has the same (inner)

and (outer) content, we can, since they are all contained in a set of

content L, and have content > g ^ , apply to these sets the

result of Theorem 20, that is, there must be a countable number

of them, say, in order, GI, &* GS> -> having in common a set of
a

(inner) content *. g' ^ ,
and therefore containing an ordinaryz

a

outer limiting set of content >g' ^.
Let us denote this latter

byd.
Similarly, there must be a countable number of the sets

g

GI, (?2'j .... whose contents are greater than g' -^ ,
and among

i*

these we can find a countable infinite set 6r2", (?,"., . . .
, having in

jg

common a set of (inner) content ^ g
1

^ , and therefore containing

an ordinary outer limiting set of content >g' 55. Let us call

this (7g. In this way we obtain a series of the sets (?/, G9
"

t
Ga'", ...,

and a corresponding series of ordinary outer limiting sets Clt (7,,

6'3 , ..., such that G! is contained in all the sets GI, (?s", ..., 3 in

all but the first, Ct in all but the first two, and so on.

By Theorem 22 the outer limiting set of Clt G'2 ,
... is an

ordinary outer limiting set let us call it G and its content is the

limit of the content of Cn ,
that is g'.

Now, since GI and Cl are both additive sets, their difference

has content ^^. Similarly, the difference between Gt

"
and C,

g
has content ^ ,

and so on. Thus, if we enclose C in a set of
. u

intervals of content < g' + $e, we shall be able to enclose the re-

g a

maining points of (?/ in a set of intervals of content < 5- -f 5- and
2. *.

a a

the remaining points of G," in a set of intervals of content < ^ -f =
2t

'

and so on. In this way we enclose simultaneously (?/, Gt", G3'", . . .

in a set of intervals of content < g'. + e. These intervals, of course,

contain the original sets from which we obtained GI, 6r2", G3'", ...
;

so that this proves the theorem.

of content lying between L and L + ; if we now omit any parts of the fornr
intervals external to the latter intervals, and let e describe a sequence havirg zero

M limit, we get the set* above referred to.

82
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64. It was pointed out in 52 that the inner measure of the

content possesses the same connection with the potency as the

content itself; this cannot be asserted for the outer measure.

On the other hand the outer and not the inner measure possesses

the properties of the content enunciated in Theorems 6 and 7.

The proofs there given, depending as they do on the property
that the content of a closed set is identical with its outer

measure, are valid in the general case, and need not be repeated ;

the enunciations of these generalisations are as follows :

The outer measure of the content of any set is the same as that

of any of its coherences.

A set which is more than countable has the same (outer) content

as its ultimate coherence.

The (outer) contents of two sets are equal, if the points of each

set which do not belong to the other are countable.

65. The (Outer) Additive Clan. It is not difficult to shew

that all closed sets belong to the outer additive class. That the

(outer) content of the sum G of two non-overlapping sets Gl and

(?, is the sum of their (outer) contents, provided both G and (?,

are closed, has already been pointed out as the correlative to

Theorem 5 ; that this is still the case if G is open can be shewn

as follows.

Let G' be an ordinary inner limiting set containing G and

having as content the (outer) content of G, that is /. G' contains

GI (the closed set), and the other component (which contains G,)

is, by Theorem 17, an ordinary inner limiting set, and has therefore,

by what has been proved for the (inner) content, content I I!;

therefore /, ^ / 7, ; but, since G can certainly be enclosed in a

set of intervals of content as near as we please to II + 72) we cannot

have /!+/.,</; therefore /,+/, = I\

Thus we have the theorem :

The (outer) content of the sum of two sets which do not overlap
is the sum of their (outer) contents, provided one of the component
sets is closed.

It does not follow that, if the (outer) addition theorem holds

when the sum is closed, it holds generally. Instead of this,

however, if we could assume that it holds when the sum consists

of all the points of an interval, we could, as in 54. shew that the
theorem would be true generally.

The sum of the (outer) contents of two non-overlapping sets is
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evidently not less than the (outer) content of the sum
;
thus the

question corresponding to that asked in 55 is the following :

Can a segment ef length a, be divided into two sets of points the

yum of whose (outer) contents is greater than a?

By applying Theorem 27, we can, precisely as in the corre-

sponding discussion of the (inner) additive class, prove the

following :

THEOREM 37. The (outer) addition theorem ftoldafor an inner

limiting set of sets of the (outer) additive class.

COR. The (outer) additive class includes all ordinary inner

limiting sets.

THEOREM 38. The (outer) additive class includes all the outer

limiting sets of sets of that claim.

COR. This class includes all ordinary outer limiting sets.

The proof given of Theorem 24 serves, with the mere

alteration of the word "
(inner)

"
into

"
(outer)

"
to prove the corre-

sponding theorem, viz. :

THEOREM 39. If each of two sets which do not overlap belong

to the (outer) additive class, their sum also belongs to that class.

Similarly, with the same alteration, and writing
"
less, than

"

for
"
greater than

" and k for k, the next proof can be applied,

and we get the following :

THEOREM 40. If each of two sets one of which is a com-

ponent of tfte other belong to the (outer) additive class, so does

their difference.

Similarly we have the following theorem : .

THEOREM 41. If a set belonging to the (outer) additive class be

divided into two components the sum of whose (outer) contents is

equal to that of the original set, each of tlie components belongs to

that class.

The next theorem may be immediately deduced from Theorems

31 and 40.

THEOREM 42. If GI and G be two sets of the (outer) additive

class of (outer) content It and J2 , (a) the set consisting of all the

points common to GI and (?2 is a, set of this class, say G', of outer

content T , and (b) the set consisting of all the points belonging to

one or both of Gy. and G2 is a set of tie class, say G, of (outer) content

I; further (c) I\ + !* = !+ 1'.
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COR. The sets G, G', <?, * G', G,- Q' all belong to the (outer)

additive class.

66. The Additive Class. The theorems proved enable us

without further proof to sum up the chief properties of the additive

class.

DEF. The additive class consists of all sets which have the

property that, if one of them be added to any other set, having no

point common with it, the sum of the contents, whether (inner) or

(outer), is the corresponding content of the sum.

(1) The additive class consists entirely of measurable sets, that

is, the (inner) and (outer) contents are the same
;
so that we may

properly speak of the content of any additive set.

(2) The additive class includes all closed sets, and ordinary

inner and outer limiting sets.

(3) The additive class includes all inner and outer limiting

sets of additive sets.

(4) The additive class includes the sum and difference of any
two additive sets.

(5) If G1 and (?a be two sets of the additive class, their common

component G' and the set G, consisting of all the points belonging

to one or both of them, both belong to the additive class, and the

sum of the contents of the two former sets is the same as the sum
of the contents of the two latter sets.

(6) The additive class includes all sets of (outer) content zero

or (inner) content infinity, and has therefore in any portion of the

straight line the potency of all possible Rets.

This last property requires proof.

If A"
1

be a set of infinite (inner) content, it is evident that the

outer content will also be infinite, and that the sum of E and any
other set will contain closed components of content as large as we

please, and cannot be enclosed in a set of intervals of finite content
;

thus E belongs to the additive class.

Next, let E be a set of (outer) content zero
;
then the (inner)

content of E must also be zero
;
so that E is measurable*. Let G

be any set of (inner) content a and (outer) content b
: having no

point common with E. Then G + E can be enclosed in a set of

intervals of content as near as we please to 6, but not in a set of

content less than b
;
thus b is the (outer) content of the sum.

*
Cp. LobeBgue, "Integrate, Longueur, Aire," 6, Ann. di Mat. (1902).
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Again, E+G contains closed sets of content as near as we please
to a. Suppose it contains a closed set K of content a greater
than a. Let E' be an ordinary inner limiting set containing E
and having zero content. Then, since K and E' are both additive

sets, their common part K' is additive and has content zero.

Therefore (K-K') is additive and has content a'. But (K-Kr

)

is a component of G, and G contains no components of content

higher than a
;
so that this is impossible ;

therefore E -f- G does

not contain any components of content higher than a; so that a
is the content of E + G. Thus E is additive. Q. E. r>.

Now, if F be a perfect set of content zero, any component E of

F has (outer) content zero, and bdongs thereforeto the additive

class; but the potency of the components of /'' is evidently thd

same as that of all possible sets. This proves the whole of (6).

It is unnecessary to say more to shew the importance of this

class of sets; it includes all the familiar sets and while it consists

entirely of measurable sets, we have at present no information

shewing that there are other measurable sets than those belonging
to this class. If, on the other hand, there be other measurable

sets, it possesses distinctive peculiarities distinguishing it from,

the class of measurable sets in toto. The fundamental property of

additive sets embodied in the definition enables us to extend the

theory of content to all sets of the additive class without any
scruple. The extent to which that theory can be still further

extended, on the one hand to the (inner), and on the other to the

(outer), additive class, and a step further to all measurable sets

has been now fully discussed. The only point which remains

uncertain is whether or no sets other than these exist.

67. It will be noticed that the additive class includes all

countable sets, and that the content of every countable set w zero.

Again, the content of the yet of irrational numbers in any
segment of a straight line is that of the segment itself.

By making use of the theorems already proved, we obtain a

proof of this theorem, which may subsequently be applied to

prove the more general one tor space of any number of dimensions.

For the sake of variety, and also because it throws fresh light on

the subject, an independent proof of the theorem for one dimension
is given below.

As in Ex. 2, 40, divide the segment (0, 1) into m parts,
where m is any odd number except unity. Blacken the central

part.
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Divide each of the (m -
I) remaining parts into 771* parts, and

blacken each central part.

Then divide each of the (m l)(m* 1) remaining parts into

m* parts, and blacken each central one
;
and so on.

The set consisting of the end-points and external points of the

set of intervals constructed thus is a perfect set, nowhere dense,

whose content* lies between 1 and 1 l/(m 1).

Thus, by suitably choosing m, we can get a perfect set,

nowhere dense, in the segment (0, 1), whose content is as near as

we please to unity. The points of this perfect set are not all

irrational, but we will now shew how to obtain from it a similar

set in which every point is irrational.

Scheeffer's theorem (Ch. IV, Theorem 18) asserts that, given

two sets, one closed and nowJtere dense, and the other countable, and

any two quantities a and b, we can find a quantity c, a < c < b, such

tiicd, if one of tlie sets of points be pushed a distance c along the

straight line, all the points of the countable set lie inside the black

intervals of the closed set.

Choose as the countable set all the rational numbers between
and 1, and as the closed set the perfect set just constructed, so

that its content is greater than 1 %e, where e is as small as we

please. Then we can find a positive quantity c < %e, such that,

shifting the perfect set to the left a distance c, all its points which
remain in the segment (0, 1) become irrational. Since these points
form a perfect set nowhere dense, of content greater than 1 e, we
have in this way constructed a perfect set of irrational numbers in

the segment (0, 1) of content as near as we please to unity. Q. E. F.

* For m=3 this is the most convenient example of a perfect act of positive
content (p. 78). A similar calculation shews that Cantor's typical ternary set

(p. 20} is a perfect set of zero content, since, in this ease,



CHAPTER VI.

ORDER.

68. In dealing with the potencies of sets, we regard the

individual elements (points) of the sets as indistinguishable, or

more properly as not distinguished from one another, so that

potency enables us to compare sets, regarded as troops in uniform,

with one another. The idea embodied in content is totally

different : here the individual points are no longer to be regarded

as indistinguishable, indeed certain of the points, viz. the semi-

external points of the black intervals, seem to play a different role

from the others. The distinguishing property, however, viz. the

relative position of the points was dependent for its very definition

on the existence of the underlying straight line as fundamental

region. This will all become still more evident when we come to

deal with sets in the plane and higher space. Content is not,

like potency, a property of the set per se, but a property of the set

with respect to the fundamental region.

Order is another property of the set per se, but in the determi-

nation of the order each individual again bears its own share. In

dealing with order we come first to consider the mutual relations

of the individuals as such among themselves, and the question
arises how are these mutual relations to be characterised, what

can we adopt as a measure of order ? As before the measurement

of order will be made to depend on (1, ^correspondence between

a given set and a set of known standard form, the characteristic

property being maintained, the orders of these standard sets are

called the ordinal types. Sets of the fcarae ordinal type are said to

be similar, and if A and B are similar, we write A ~ B, or B ~ A.

Similar gets clearly have the same potency.
A set given in order will be called an ordered set, and

throughout the discussion, unless the contrary is stated, the given
order will be supposed to be maintained, not only in the set itself,

but also in its components, which, for definiteness, may be dis-

tinguished as ordered components.

69. The characteristic of order. A set of points, or

other elements, containing at least two elements, is said to be in
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simple order*, if it has two characteristics. The first is that a

and b being any two of the elements, distinct from one another,

there is some characteristic property, sdch that we can say without

anv ambiguity that a possesses it in a superior degree to 6, or 6

in a superior degree to a, this will be indicated in symbols by

a < b in the former case,

and a > b in the latter case,

and we shall use the expression
" a comes before 6

"
in the former

case and " a comes after 6
"
in the latter case to denote the fact in

question. If a and b are two elements satisfying neither a < b,

nor a>b, they must possess the characteristic property in the

same degree, it follows that they cannot be. regarded as distinct,

but are only defined in formally different modes. This will be

denoted by ,03d
and we shall say "a and b are identical^."

The second characteristic is that if a < b < c, then a < c. In

this case b is said to lie between a and c.

If there is an element which comes before (after) all the others,

it is called the first (last) element.

70. Finite ordinal types. To take first a finite set of,

say, n elements. However arranged, these elements are in (1, 1)-

correspondence with the first n integers. Such an ordered set,

if it consists of more than one element, has a first and a last

element: the same is true of every ordered component. Con-

versely, given a set with these properties, it is a finite set. For

let a, be the first. If a, is not the only element, the remaining
elements form an ordered component ;

let a., be the first of these.

Similarly we determine a,, unless a, is the last. We must airive

at the last after a finite number of such determinations, since the

existence of an infinite ordered component al , rt,, ... Om, ...

without a last element, is expressly excluded. Thus the above
art; the characteristics of the finite ordinal types.

71. Order of the natural numbers. We have already
had to deal with the idea of an infinite set in order, in relation

to the potency of a countably infinite set. Here the characteristic

property of the set, when arranged in countable order, is that we
can say of any element a whether, or no, it corresponds to a smaller

integer than 6 or vice versa
;
if a and 6 correspond to the same

Cantor, Math. Ann., XLVI. (1895) p. 496.

+ If a and b really are identical, the order is said to be pure, otherwise mixed.
Unless stated to the contrary, order is always understood to mepn pure order.
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integer they are identical. Thus, when arranged in countable

order, the ovder of any countably infinite set is that of the natural,

numbers. The characteristic peculiarities of this order are that it,

as well as each of its ordered components, has a first element, and

that every element, with the -exception of the first element, has

another element immediately preceding it, while there is no last

element.

That these peculiarities suffice to define this ordinal type may
be shewn as in 70. For a similar argument proves the existence

of an infinite ordered component Oj, a,, .... while the existence of

a component formed by adding another element 6t is excluded,

since 6, would have no element immediately preceding it.

To this ordinal type belongs an open sequence lying entirely

on one side of its limiting point, the points being taken in order

leading up to the limiting point. When taken in this order the

sequence is sometimes called a progression, and in the reverse

order a regression*. The negative integera in descending order,

1, 2, , ,
form a regression.

72. Orders of closed sequences, etc. A countable set

may however be considered as arranged in some other order.

When the set is defined in a manner giving the elements

in order, this order is called the natural order. We have

already had numerous examples illustrating this. For instance

the sequence given in Ex. 1, Ch, Ill, p. 17 is given in

order, the points being assigned from left to right, in order of

position, or the corresponding numbers in ascending order of

magnitude. Here again the set, as well as each component, has

a first element. There is a last element, viz. the point 1, but it is

such that it has no definite element preceding it, while every
element except the first and the last 1 has a definite element

immediately preceding it and another immediately following it:

thus the natural order here is different from the finite orders

and from the order of the natural numbers. As before it may
be shewn that these peculiarities suffice to characterise the ordinal

type. All closed sequences lying only on one side of their limiting

point, considered in order of position approaching the limiting point,

evidently belong to this ordinal type. We may call this order

the progressive order of a one-sided closed sequence. To the sarne

ordinal type belongs every open sequence on one side only of its

limiting point, with one point added beyond the limiting point.

*
Russell, Principle* of linth. p. 199.
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A two-sided open sequence, for instance

-i,--oi, --on. , -on, -01, i

(using the binary notation), is an example of another countable

set given in natural order of position, or ascending magnitude.
It has all the characteristics of a finite set, except that which

postulates that what is true of the set is true of its components.
It has indeed ordered components having the order of the natural

numbers, or of a closed one-sided sequence*.
The negative and positive integers in the following order,

-1, -2, -3, ,-n w, ,3,2,1,

belong to this ordinal type.

A two-sided closed sequence, for instance

- 1,- -01,
- -0

s
!, , , -O'l, -01, 1,

has proper components of all the above types. The whole set

however is such that every element except the first \, the last

1, and one other element, the origin 0, has a definite element

immediately preceding it, and another immediately following it.

The origin however has no element either immediately preceding
or following it.

Ex. 3, Ch, III, 12, p. 23 gives us another countable set in a

more complicated order; and the method indicated at the con-

clusion of that section enables us to build up sets, whose orders

become more and more difficult to describe. These sets will

occupy us more closely in the next chapter (cp. also Ex. 5, p. 28).

73. Graphical and numerical representation. The idea

of the orders of countably infinite sets which are simply ordered is

nothing more than a discontinuous function of two variables, and

may be graphically represented by means of the diagram of a

rectangular trellis, so familiar in the theory of numbersf.
If we take any countably infinite set, whether it be of points

on the straight line, or anything else, and arrange them in

countable order, say Elt Et , ...,En> ... (this may generally be done
* Finite sets, progressions, regressions and open two-sided sequences are classed

together a discrete series, and a set of postulates given for them byHuatingdon, "The
Continuum as a Type pf Order," Annal* of Math., Series 2, Vol. vi. (1905) p. 164.

The interest of this olass of sets lies in the fact that mathematical induction may
be applied to discrete sets, and to these sets only.

t F. Bernstein, Inantj. Ditt., Gott. 1901 ; Math. Ann. LKI. p 118 (1905).
Bernstein uses the complete trellis, instead of the wedge-shaped diagram of this

article, and obtains the necessary and sufficient condition that the diagram
snould represent order in a Corresponding form. The wedge-shaped digram
has the puutica' advantage of greater simplicity.
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in a variety of ways, but we choose out one particular arrangement),
the idea of the natural order of these f?B is completely embodied

by giving a law by which we can say whether, or no, Et came after

Ej originally, i being the less of the two integers i and j. Unless

we can give such a law, we cannot speak of a natural order"

at all
;
vice verm, given such a law, we can determine the position

of any element E{ with respect to any other one Ej t and so can

always say whether, or no, it lies between any two assigned

elements : this is what we mean by saying we know the natural

order, or the ordinal type.

The diagrammatic representation of the natural order depends
on the customary representation of the pair of integers (j, ) by
means of the cross points of a rectangular trellis, so that the

point (j, i) is the point whose coordinates are j and i. Each

such point (j, i) in the wedge-shaped diagram in which i<j,
we mark with a black spot if Ej comes before EI (in symbols,
if Ej<Ei). This wedge-shaped diagram gives us all the in-

formation we require. The order-diagrams determined in this

way by the various ordinal types of countably infinite sets, do

not exhaust all the possible patterns formed by placing spots at

the trellis-points of the wedge. Indeed the first characteristic of

simple order without the second would suffice to determine such

a pattern. The necessary and sufficient condition that such a pattern
should serve as an order-diagram is as follows If i, j, k be any
three integers in order i<j<k, the right-angled triangle whose

vertices are (j, i), (k, i) and (k,j) cannot be such that both ends of

the hypotenuse are spotted (or unspotted) and the opposite vertex

unspotted (or spotted). In fact there are six ways of arranging

Ei, EJ, Ek in ascending order of magnitude, and therefore of the

eight possible patterns two have to be rejected. Plotting down the

six cases, it will be found that the above statement is true, so that

the condition is necessary. On the other hand, if it is satisfied,

each such triangle in the diagram will correspond to an order of

Eit EJ, Ek so that the condition is sufficient.

We may transform such a diagram into a numerical representa-
tion by interpreting each black spot by a 1, and each unspotted

trellis-point by a 0, and reading the columns from bottom to top
in order from left to right. Prefixing a point and interpreting in

the binary scale, we get a binary fraction corresponding to each

diagram, and vice versa.

These numbers, which we may call the binary order-fractions,

form a perfect set nowhere dense, and have therefore the potency c.
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In fact the condition that a diagram should be an order-diagram
does not permit any order-fraction to begin with 00 without having

as the third "digit, and generally, given n digits, imposes a

restriction on the (n + l)th digit which is equivalent to cutting out

from the continuum (0, 1) a certain set of intervals, one of which

is ('001, "01). It is easily proved that the end-points of these

intervals are limiting points of the set
;
for instance, in the case

of the given interval, which may also be written ('OOOi, "01), the

end-points may be approached by the points
<000141'...1 W and

0100s 4...0
ni for all integers n; these points correspond to dia-

grams clearly satisfying the condition for order-diagrams. Thus

by Theorem 15, Ch. IV, p. 48 the result follows.

A given ordinal type will in general be represented by a

ariety of diagrams. Jn this way the terminating binary fractions,

and zero, or, which is the same thing, the diagrams with a finite

number of spots, and with no spots, all represent the ascending
order of the natural numbers*, and correspond to different ways in

which it can be arranged in countable order. In like manner all

the simple circulators represent the descending order of the negative

integersf. In particular the binary number '1 11 111 ..., or '1,

or 1, represents the order of the negative integers in the countable

order 1, 2, ...,..., the corresponding diagram having dots at

all the trellis-points.

Fig. 14.

*
Cantor's number . These are not the only binary order-fractions repre-

senting progressions ; for instance -0 11 1010 s 1010* O7 1010" 0*+* .-.. represents
the progression 2, 4, 1, 6, 3, 8, 6, ... in which each odd integer has been moved on,
and each even integer moved back, two places.

+ Cantor's number *w.
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Generally given a binary number representing the order of a

certain simply ordered set, it may be shewn that, if we can* alter

the first n figures of the binary number in such a way as to obtain

a new number representiug order, the new binary number will

represent the same order as before. For instance the diagram

whose columns are alternately plain and spotted (Fig. 14), or the

corresponding number

11 0* I4
... O*"-1 ! Qm+1 ...

represents the natural order of the negative and positive integers

including zero, and corresponds to the order

0,1, -1,2, -2,3,...

while -1 11 O3 I4
... O1"-1 1 0'"+' ...

corresponds to the countable order

1,0, -1,2, -2, 3,...

and -1 10 O3 14
...

s""1 1** +1
,
...

to the countable order

1, -1,0, 2, -2,3

74. The rational numbers. Close order. We have seen

that the rational points are countable, their natural order of

position, or ascending magnitude, is such that between any pair of

elements there is another element. Any simply-ordered set which

has this property will be said to be in close order.

It is to be noticed that while every set which is dense every-

where is in close order, the converse is not truef. Every set

which is dense in itsolf on both sides (Ch. Ill, 10, p. 22), or on

one side onlyj, is in close order (cp. Ex. 1, Ch. IV, p. 45).

It is evident that the property of being in close order is

invariant for (1, 1)-transformation maintaining the order. Thus

' In general this is not possible. It is only possible when, apart from a finite

number of columns, each column of the order-diagram is either wholly plain or

wholly spotted.

t H. J. S. Smith oses the term as equivalent to dense everywhere. The term
has been here adopted but in a slightly different sense, for obvious reasons.

Proc. L. M. S. vi. p. 145. Unfortunately Cantor, who bad previously only used

the expression den*e everywhere in a strictly relative sense (cp. p. 21 footnote), uses

in Math. Ann. XLVI. p. 504, the expression dense everywhere in an absolute sense as

equivalent to the expression in elote order. The same remark applies to the terms

"limiting element," p. 509, "closed set," "perfect set," p. 510. This has been

frequently copied without comment, thereby introducing quite unnecessary con-

fusion into the subject. It is to be recommended that in using these words in an
absolute sense, the word ordinally should be prefixed, see 78.

$ This was stated incorrectly on p. 22, lines 28 83. The mistake WM
overlooked till too late for correction, therefore attention is called to it here.
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ifont set of a certain ordinal type is in dose order, every set of the

type t* in close order.

As typical of a countable set in close order it is convenient to

take the set consisting of all the rational numbers between and

1 whose denominators are powers of 2, viz.

*.

i f,

i, t. i, i (A),

etc.

or, expressed in the binary scale,

1,

01, -11,

ooi, -eii, -101, -111 (B),

etc.

that is all the finite binary fractions. Considering, as is often

convenient, every number as expressed by an infinite number of

figures, and not ending in a series of zeros, by which means every

number is expressed in one and only one way, the numbers in

question are those ending in 1, viz. as follows:

oi,

ooi, -ioi,

ooi, -oioi, -iooi, -noi (C),

etc.

Let N denote n zeros and ones in any order, 'Nl or 'NOI

is any one of this set of numbers, and it is the limit on the right
of the sequence

JV01, -A'Oll, vtfOlll,

and on the left of the sequence

Jnoi, -JVlOOl, -#10001,

the set being dense in itself on both sides.

The limits which are not included in the set consist of all

the remaining binary fractions, whether non-periodic, or periodic
but not. simple circulators.

Given any number between and 1, we can at once, by
expressing it in the binary scaie

: (1) determine a sequence belong-

ing to our set, and defining the number, and (2) ascertain whether,
or no, the number belongs to our set.

For instance, the rational number has the following defining

sequence,
0, -01, -0101, -010101, etc.;
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it does not belong to the set, and is a periodic binary fraction,

viz. 1)1.

The most general countable set in close order, without first or

last element, can be brought into (1, 1^correspondence maintaining

the order* with the above typical set in the following manner:

Let the length of the fundamental segment (A, B) be denoted

by Sj. The points A and B may, without loss of generality, be

assumed to be limiting points of the set.

Arrange the points of the set in

(AB) in countable order ^3?L-^
s
l' _

p p p A x\ M B* !>* S> *
>

Take the point P, which comes first Flg- 15<

in the series

P P P Pt* 1> f 2> -* 3> **>

and denote it by #,, and denote the lengths of (Ax^) and faB)

by s i and sn respectively.

Since A is a limiting point of the sot, there are an infinite

number of the points in sn , and we denote the first of the points

in the countable order Plt P2 , ... whicn lies in 8U by xm . Similarly

the first in su by xn . We notice that one of the points #, or #n
is P2 ,

and that the points #01 ,
xl} xn are in the same order as the

binary points '01, '1, '11, viz. x
f>l <xl <xn .

We continue in this way, denoting the segments on the left

and right of xn by smi and $ vll respectively, and the first of the

points Pj ,
P2 ,

. . . which lies in sjra by xmi and in $AU by Xyu..

Since between any two points of the set there is another point of

the set, A and B are limiting points of the set
;
these points will

exist for every combination of n digits N.

In this way we attach to each binary number "Nl a point xm
of the set, and to each point Pk of the set a definite number 'Nl,

where n ^ k. The (1, 1 ^-correspondence between the points of our

set and the typical set in close order thus obtained, is then such

that the order is maintained, that is to say if

Ml < 'Nl < 'Rl,

then x^ <xn<xn .

We have thus set up a (1, 1^correspondence maintaining the

order between our set in close order and the typical set of the same
ordinal type.

*
Cantor, foe. tit., 9; Brodn, J. /. Math. Vol. cxvm. This ordinal type is

denoted by ij.

T. 9
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75. The same notation being used as in the preceding section,

let us,write

%*

and generally

^vw
"

58
5 .vi (* ">"J-v i/>

j^, and in particular^, is any number greater than 1 and

loss than 1.

By proper choice of the quantities ^ V1
we can construct any

set of the ordinal type considered. The necessary and sufficient

condition that the set should be dense everywhere is that the length

of the maximum segment after n divisions may be zero : this can be

expressed as a condition to be satisfied by the quantities^ For

the above formula shews that, when calculated out, s^ : st is

expressed as a product of n factors of the type (1 + ejh) where e

is corresponding to each figure 1 in N, and eis 1 corresponding
to each figure in N, the index i in each case being that

approximation to N got by stopping at the or 1 in question.
An example will make this clearer than any explanation ;

in

practice the rule is excessively simple :

Siomoi = $1 i (1
-

ji) i (1 +.?n) i (1
-

jioi)

I (1 -juai) (1
-
jiom) ^ (1 + jaonn).

Let
j.,i

denote the maximum value of
\j \

used at the nth

division, and let

J - i (i +#) i (i +j.') - i- (i +j,;>;

also let s^ be the length of the maximum segment after n

divisions, so that

Jn < Jn -

The necessary and sufficient condition that the set should be

dense everywhere is tfieii

J=Lt /n = 0.
=

If, which is more easily ascertained when the/s are given,

TsLtJ^-0,
11= 00

it is clear that J is also zero, and the set is dense everywhere;
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this latter condition is sufficient but not necessary. An equivalent
00

form of this condition is that S i(l ?'') must diverge*.
n=l

Ex. 1. In the typical case ( 74) all the /a are zero. Hence

Ex. 2. Divide tho segments always in the ratio 2 : 3. All the f are

equal to I.

The set is dense everywhere.

Ex. 3. Take the set of all the rational fraction* between arc! 1, whose

denominators are powers of 3, and arrange them thus :

We divide the segment (0, 1) or s^ at the jxnnt | or '2 in the ternary scale.

The segment n ,
of length f, we then divide in the middle at the point '1

in the ternary scale. . The segment * i, of length J, we divide in the ratio 2 : 1

at the point '22 in the ternary scale. Generally, any segment whose length
2 1

is --' we divide in half, and any segment whose length is in the ratio 2 : 1.

3 3^
We then get the following scheme, where on the left-hand side the indices

of the points #A-i are given, and at the corresponding places on the right-hand
side the ternary fractions expressing the corresponding points *V1 .

1, -2,

01, -11, . -1. . '22,

001, -Oil, -101, '111, -02, -12, -21, -222

0001, -0011, .............................. -01, -11, ...... . ....................

It is clear that at every division, the extreme left-hand segment has the

maximum, and the extreme right-hand segment the minimum value. The
maximum segment is alternately bisected and divided in the ratio 2 : 1. The

j corresponding to bisection is 0, and that to- division in thb ratio 2 : 1 is f.

*
"Density of Linear Sets of Points," Proe. L. M. S. Voj. XKIV. p. 285 seq.,

where the above condition is given in the special case considered.

t We notice that all the fa are either or $ , and if jxl is I, jy^ is '0 and

Jim s -J, while ifj,vi is 0,jmi and;'^ are both J.

Hence if 4>n be the number of fa at the nth division which are equal to 1, and

/ (n) the number equal to zero,

the general solution of which is

Since (1)
= 1, <t> (2) = 1, thi gives

2" + ( - l)*~l

*() =" 8
' /(")

-

Thus at the 1st division there was 1 k which was |, and ft's zero.

2nd ,, ,, 1 ,, ,,1
3rd were 8 *'s which were ,, 1

4th ,, ,, 5 ,, ,,8
5th 11 5 ,,

9-2
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Hence >>$* 8

the last factor being A if n is oven, and
if

if n is odd.

Thus *-<jft ^M + i-JKi)-
1

,

but 4.'=a)">.V

Both y and ./' however vanish, the condition for density is therefore

satisfied.

76. Suppose we have a sequence of the typical countable set

in close order, lying entirely on one side of its limiting point L, say

on the left, and let L be a point of the set : then, since the order is

maintained, there are only a finite number of the corresponding

points of the general countable set G in close order lying between

the point corresponding to the first point of the sequence and that

corresponding to' any other point of the sequence, but an infinite

number between the former point and the point corresponding to

the limiting point L of the sequence: thus these corresponding

points also form a sequence lying entirely on one side of the point L'

corresponding to L
;
L' may be the limiting point of the sequence,

or may -lie beyond it, in the latter case the limiting point L" of

the sequence will not belong to the set and between L1

and //'

there will be no point of 0. Vice versa, to every such sequence of

the set G corresponds such a sequence of the typical countable set.

If we take any other sequence of the typical countable set on

the same side of L as before, and having L as limiting point, it

forms with the former sequence another such sequence, and there

corresponds to it a sequence of G, whose limiting point must be the

same as before. If, on the other hand, we approach L by means of a

sequence of the typical set on the other side, say the right, the

limiting point of the corresponding sequence must again be such

that between it and L' there is no point of G
;
thus either it is //,

or it is some point L1"
on the other side of L' from L"

;
in this

case between L" and L'" there is no point of the set G except L'.

Similarly if the limiting point L be not a point of the typical
set in close order, we get two points L' aud If (or one point, if

these coincide), not belonging to G, but limiting points of G, such

that between them there is no point .of (?; these being the

limiting points of sequences in G whose correspondents have L
as limiting point

Thus we see that

(1) No countable set which is in close order is closed, since

this is true of the typical set.

(2) There are only two kinds of such sets
; either such a set

is dense everywhere in a segment,, or in a closed set of potency c.
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(3) Extending the correspondence between the points of

two such sets to their limiting points, in such a way that to each

limiting point of a sequence corresponds the limiting point of the

corresponding sequence, each non-included limiting point has at

most two correspondents/ between which lies no point of the sefc

in question.

Examples of both kinds of sets in close order have been given

in Ch. IV, p. 45. A countable set in close order may*, however,

be dense in itself on one side only. For instance, the terminating

ternary fractions not involving the figure 1 (cp. Ex. 2, p. 20). Nor

does this exhaust the possibilities ;
we might, for instance, replace

any of the terminating ternary fractions just mentioned (which are

limits on the right only) by the corresponding circulators (which

are limits on the left only) ending in 02 instead of 2.

On the other hand any two sets, each consisting of all the

end-points of the black intervals of a perfect set, are in (1, 1)-

correspuiidence maintaining the order, and constitute an ordinal

type different from any yet discussed.

77. By reasoning precisely similar to that used in the particular

case of the preceding section, it appears that, if two simply ordered

sets on the straight line are in (1, 1 ^correspondence maintaining
the order, their limiting points are in a special kind of (2, 2)-

involution (which in special cases may become a (1, 2) or a

(l,.l)-involution), such that only- the end-points P1 and Ps of

a black interval can have the same correspondent P and this

can only take place if P be not an end-point of a black interval ;

if, on the other hand, Pl corresponds to an end-point Qr of a black

interval (Ql} Q2),
P

l has no other correspondent and P3 corresponds

uniquely to Qz .

If any limiting point P has two correspondents Pt and Pa in the

involution, both these poinlts cannot be points of the set of which

they are limiting points, since this set is in (1, l)-correspondence
with the other set. Thus if a limiting point Pj does not belong
to the one set, and the corresponding point P does belong to the

other set, PI must be an end-point of a black interval, and the

other end-point P, must belong to the set and be the correspondent
of P.

From all this it follows that if there be one set of an ordinal

type which is closed, all sets of that type are either closed or can be

* See second footnote, p. 127.
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closed by adding to them a finite or countably infinite number of

limiting points on one side only.

Such sets are said to be ordinally closed, and their type is said

to be a closed ordinal type. Given any progression (or regression)

of the elements of such a set, there is a definite element of the set

which comes immediately after the progression (or before the

regression). This element is called the ordinal limiting element

of the progression (or regression), and is said to be a principal

element of the set. A simply-ordered set all of whose elements

are principal elements is said to be ordinally dense in itself, and

if also ordinally closed is said to be ordinally perfect*. All

these properties are invariant for (1, l)-correspondences which

maintain the order.

78. Order of the continuum. The next ordinal typet
to be discussed is that of 'the closed continuum itself. In the

introductory discussion of the linear continuum in Chapters I and

II, we assumed the straight line to consist, of the rational points
with all their limiting points, that is to say tlie continuum is

(1) ordinally closed, and (2) has a component which is dense every
where in it, and is countable and in close order. These two

characteristics completely determine the ordinal type of the

continuum]:. It follows therefore from the preceding section

that any linear set which has 'the order of the continuum can only
be itself a segment, or a closed set of potency c omitting one end-

point of each black interval.

That a (1, 1 ^correspondence between the segment (0, 1) and
such a set exists can b easily shewn. When the set is perfect
and dense nowhere, the following mode is convenient.

* See second footnote, p. 127.

+ Denoted after Cantor by the symbol 0.

The problem of determining under what circumstances a simply-ordered set

in any fundamental region whatever has the ordinal type of the continuum, was
proposed and solved as above by Cantor in Math. Ann. XLVI. The problem has

frequently been rediscussed. References will be found in Russell, Huntingdon, loc.

fit., Veblen, Trant. of tltt Amer. Math. Soc. Vol. vi. pp. 165171. After what has
been said it is unnecessary to remark again on the use of terms; attention may
however be directed to the fact that in all these discussions the word continuum
must be understood to apply to the ordinal continuum, not to the actual continuum,.
still less to the actual linear continuum for which

( 95) a still further specification
is necessary.

In this connection notice raaj be directed to Veblen's use of the Heine-Borel
theorem as an axiom equivalent to the Cantor-Dedekind axiom

; Bull, of the Amer
Math. Soc. x. p. 436 (1904).
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Let (A, B) be the fundamental segment, A and B being points
of the set. Then the set in question, say 0, consists of all the

external points of a set of non-overlapping and non-abutting
intervals, together with one end-point from each interval.

Let the intervals arranged in any way in countable order, e.g.

in order of magnitude, be denoted by

di, d,

Let us take the first in this series which lies between A and dt

and denote it by dn ,
and the first between d

v and B by <,,.

Similarly the first between A and doi by dtm , the first between dn
and rfj by dnl ,

the first between dl and du by dm ,
and the first

between dn and B by dm ;
and so on. In this way we get all the

black intervals arranged in the order of the typical binary set,

dii dn , On, aooi, dou , Ojoi, ain ,
dmi ,

... etc.

That end-point of any interval dK ^
which belongs to the set we

denote by P vl ,
then it is clear that the countable set

i> * *rii * Mi -* ou>
"

101 >

"
ni> J- 0001 > etC.

is in close order, and in (1, 1 ^correspondence maintaining the

order with the typical set in close order. Those of the limiting

points of the above countable set which do not belong to it ar3

limits on both sides, no two of them therefore by 76 can have the

same correspondent ;
further no one of them can have two corre-

spondents because the typical set in close order has no limiting

points on one side only. Thus the involution between the limiting

points ( 77) is a (1, l)-involution, so that the whole set G is in

(1, 1 ^correspondence maintaining the order with the continuum.

79. The next set whose order is to be considered is the set of

all the derived and deduced sets of a set whose first derived set is

more than countable.

In this investigation we have outstepped the limits within which

we had hitherto confined ourselves; the fundamental region Fis
no longer the straight line.

Form first the fundamental region F^ whose elements are all

the closed sets of points on the straight line. It is shewn in

97 that the position of any element G of F, may bo determined

in the same way as that of a point on a straight line, in other words

F^ may be taken to be a straight line. FI is part of F and we
then construct the whole fundamental region F in the following
manner: starting with any closed set G (^hich is an element of i\

and therefore of F), form all the sets from G which can be formed

by the processes of derivation and deduction in order; these.



136 ORDIE [CH. VI

although they are elements of F, which, as closed sets, are the

same as these derived and deduced sets, are to be regarded as new

elements of F, and the position in F of any one of them 0' is

determined by two criteria, firstly by the position of in .F,

and secondly by the position of G' in the series of derived and

deduced sets of 0. The fundamental region F consists of Fl and

these new elements. F is not simply ordered
;

but given any

element G of Ft ,
the sets which can be obtained from by the

processes of derivation and deduction clearly form a simply ordered

set in F, the position of any element G' in the set being deter-

mined by the series of processes by which G' is obtained from G,

which, as is shewn in 97, is equivalent to assigning a certain

linear set of points of potency c.

If G is countable, the whole set so obtained is countable, and,

when arranged in its natural order, it has a last element, which is

a set consisting of a finite number of points of the straight line.

If G is not countable, the set when arranged in its natural order

has no last element, since although only a countable number of

elements can be passed over, which as sets of points on the

straight line are distinguishable from one another (and are

therefore in (1, 1^correspondence with a certain ordered set in

F^ yet after we get to the nucleus we still have elements of F
which as such are distinguishable from one another, namely, by
the second criterion of position in F.

If G and T be two closed sets whose points are more than

countable, we can then clearly set up a (1, 1Correspondence

maintaining the order between the elements of F obtained from G
and those obtained from T, by making two elements correspond
which are obtained from G and from T respectively by the same
series of the processes of derivation and deduction. Thus there

will be in the theory of sets of elements in F a definite potency

N, (Aleph-ein. Aleph-one) and a definite ordinal type 1 corre-

sponding to a series of elements obtained from any element G
of F^ by the processes of derivation and deduction.

It has been necessary to go fully into this point, since the step
which we have taken into a new fundamental region F, is one

of great importance, and the way is beset with new and still

unsurmounted difficulties. It must be emphasized that we have
not yet shewn that there is a set of points on the straight line of

potency fct,, or of ordinal type fi : we cannot infer the existence of

such a set from the fact that such a set exists in a totally different

fundamental region.
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THEOREM 1. The whole net of all the derived and deduced sets

ofa perfect set is not countable.

For suppose it were countable, and let the sets arranged in

countable order be

&,B*,E9 ..................... .... .....(1).

Then E2 may be subsequent to Elt in the natural order, or it may
precede j,; in the latter case however there must be a first set E
which is subsequent to El

in the natural order. In the same way
let EJ be the first set after Ei in the order (1 ), subsequent to Ei in

the natural order
;
and so on.

In this way we obtain a new series,

Ki t Ei, EJ, Eic, ... Emt ,En ... ......... . ..... (2),

which is never-ending, since any set has sets after it in the natural

order
;
here these sets are in their natural order and also

(3).

These sets will have a deduced set, which will be one of the sets

of the series (1) ;
let its index be X, and determine between which

two numbers of the series (3) X lies, suppose

Then J x is subsequent to Em \
but En is the first set in the

order (1) subsequent to Em ,
therefore X cannot be less than n, and

EI must be identical with En . But this cannot be true, for by
our determination of EK (although as a set of points it is the same

as En), ii is distinguishable from En by its place .in the natural

order, and is subsequent to En . Thus it is impossible that the

sets can be arranged in countable order.

80. Well-ordered sets. A set of ordinal type H in F has

the following important characteristic, the set itself, as well as every
one of its components, has a first element. Such a set is said to be

well-ordered.

The set of all the negative integers in order of ascending magni-
tude . . . n, (n 1), ... 3, 2, 1, is an example of a set which
is not well-ordered : the ordinal type of this set is denoted by *w.

It is clear that the set of all the derived and deduced sets of a
set whose first derived is countable, also has this characteristic;
such a set is a countable well-ordered set.

There will be a variety of ordinal types corresponding to such

series. These ordinal types belong to the theory of linear sets of

points, since, as we saw (Ch. Ill, 12 seq.),vfQ can constnict sets of
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points on the straight line whose natural order from left to right is

precisely that of any given series of such sets.

The following theorems with respect to well-ordered sets, have

therefore certainly an application to countable sets on the straight

line, and to countable sets and sets of potency ^ in the funda-

mental region F of the preceding article. How far they are of

general application is, because of our ignorance as to the properties

of different fundamental regions, indeed, even of the straight line

itself, at present uncertain. We shall now suppose that we are

working in some fundamental region R, at present unspecified, in

which there exist well-ordered sets of various potencies.

THEOREM 2. Every component of a well-ordered set is well-

ordered.

That is to say, when we take the elements of such a component
in the order in which they occur in the original set, the component
is well-ordered, for it has a first element, and so has every one of

its components, since these are components of the original set.

THEOREM 3. Every component set of a well-ordered set

determines an element which is the first of the remaining elements

to follow every element of the component, except when there are no

elements following every element of the component. In particular

every element except the last, if there is one, has one immediately

following it.

For the component in question determines another component

consisting of all the remaining elements which do not precede any
element of the former component; the first element of this

second component is the one referred to in the enunciation.

It is to be remarked that the series of all the derived and

deduced sets has no last element, unless the first derived set is

countable. But, for instance, the series of these sets which in any
particular case are distinct has a last element, viz. the nucleus, if

the set first derived be more than countable, and otherwise a finite

set of points.

The component of a well-ordered set consisting of all the

elements preceding any particular element, say a, is called a

segment (Abschnitt), and will be said to be cut off by a
;
we shall

use A to denote the segment cut off by a. It will be shewn
that of two well-ordered sets which are not similar, one is always
similar to a segment of the other, so that all well-ordered sets in

any particular fundamental region can be considered as segments
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of one particular well-ordered set ; it is not however certain that

in that fundamental region the latter well-ordered set, a-* such

exists at all.

It is clear from the definition that if A is a segment ofE and
A' of A, A' is a segment of E.

THEOREM 4. A well-ordered set is not similar to any of its

segments.

For consider the component of the well-ordered set E con-

sisting of all those elements which cut off segments similar to E ;

if this exists it will have a first element, let this be a. Then the

segment A ,
cut off by a, is contained in every segment similar to

E, and may be said to be the smallest segment similar to E.

Now since A is similar to E, every element of A, considered

as an element of E, has a correspondent in A
; but, since A is a

segment of E, there is at least one element of A whose corre-

spondent is not a "point of A. Thus A, considered as a component
of E, corresponds to a proper component of A. But the element

a is the first of the elements of E to follow all the elements of A ;

hence, since E is similar to A, there is an element a' of A, which,

of those elements of A not belonging to the proper component in

question, is the first to follow all the elements of that proper

component. Thus the proper component is the segment A' cut

off by a. Now E~A, and A~A', therefore E~A'. But A'

is a segment of A, contrary to the hypothesis that A was the

smallest segment of E similar to E. Therefore there is no

such smallest segment, and therefore no such first element o, so

that the hypothetical component does not exist, and there are no

segments of E similar to E. Q. E. D.

THEOREM 5. If every segment of a well-ordered setE is similar

to a segment of a well-ordered set F, E is similar to F or to a

part ofF.

For, by Theorem 1, there will be only one segment ofF similar

10 any particular segment of E, since otherwise there would be

at least two such segments, and they would be similar to one

another; but, since, of tho two elements cutting off these segments,
if not identical, one must precede the other, all the elements pre-

ceding that one would form a segment of the segment cut off by
the other, thus the one segment would be a segment of the other,

and be at the same time similar to it, contrary to Theorem 2.

Thus there is a (1, l)-correspondence between all the segments
of E and all or some of the segments of F. If, now, we make any
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Clement a of E, cutting off a segment A, correspond to the element
'

of F, cutting off the corresponding segment A' of F, this sets

up a (1, l)-correspondencc between all the element* of E and all

or some of the elements of F.

In this correspondence the order will be maintained
; for, if a

and b be any two elements of E and a' and 6' the corresponding

elements of F, then, if a and 6 are distinct, one of them precedes

the other, let a denote the one which precedes the other 6. Then

the segment B' being similar to B, there will be a segment of B'

similar to A
; and, since there is only one segment of F similar to

A, it will be none other than this segment of B"
;
that is, A' is

a segment of B?, and therefore a precedes b'
;
thus the order is

maintained.

So far we have proved that E is similar to F, or to a proper

component of F. If this proper component were not a segment,
there would be at least one element a of F which came before

some element 6' of that component, although a would not belong
to that component. But the correspondence was such that the

whole segment cut off by b' was similar to a certain segment B
of E, and therefore the segment cut off by a', being a segment
of B', is similar to a certain segment A of E, thus a will have

a correspondent a in E, and will therefore belong to the proper

component in question, contrary to the hypothesis. Thus the

proper component can only be a segment of F, which proves the

theorem.

COB. The necessary and sufficient condition that a well-ordered,

set E should be similar to another well-ordered set F is that every

segment of E is similar to a segment of F, and every segment of
Fto a segment of E.

For in this case E cannot be similar to a part of F, since that

part of B would be similar to a part of A, and therefore A would

be similar to a part of itself, contrary to Theorem 1.

THEOREM 6. Of two well-ordered sets E and F, which are not

similar, one is always similar to a segment of the other.

Consider the component of E confuting of all those elements
of E which cut off segments similar to no segments of F. If this

component exists at all, it has a first element a and the segment
A, cut off by a, is evidently contained in every segment of E which
is similar to no piece of F] so that it may be said to be the

smallest such segment. Hence any segment of A is similar



80] ORDER 141

to some segment of F, so that, by Theorem 2, A is similar to F,

since, by hypothesis, it is not similar to a segment of F.

Thus, cither F is similar to a segment of E
t
or there is no

segment of E which is not similar to a segment of F. In the

latter case, however, by Theorem 2, 7?is similar to a segment of F,

since by hypothesis, E is not similar to jF. This proves the theorem.

Con. Every comjxment of a well-ordered net K, is either similar

to E or to a segment of E.

In Ch. Ill it was shewn that, given any particular operation

of the series of derivations and deductions, we can construct a

countable set of points on which every one of the operations up to

that particular operation can be carried out, and which is reduced

to a single point by that operation. If therefore we take any

perfect set of points not everywhere dense, and in one of its black

intervals introduce such a countable set, having a point of the

perfect set as limiting point of highest order, we have in this -way
constructed a set of points whose first derived is more than

countable, such that all the derived and deduced sets, corresponding
to the operations originally given, are distinct and form a segment
of the whole series of derived and deduced sets

;
all the remaining

sets of the series are identical with the nucleus. Each of these

segments is therefore finite or countably infinite.

Thus we have the following theorem :

THEOREM 7. Every well-ordered set E whose potency is less

than N,, is finite or countably infinite, and is similar to a segment

of the set of all the derived and deduced sets of a set E' whose first

derived is more tftan countable.

Tfie set E' can be so chosen that each derived and deduced set

of the segment in question is distinct from any other derived and

deduced set, while all the derived and deduced sets not belonging to

the segment are identical wit\ the nucleus of E'.

Every such set E is also similar to the senes of all the countably

infinite sets which can be obtained by derivation and deduction from
a certain countable set E".

We have now got a complete grasp of the well-ordered sets of

potency less than j$,, and we see that they arise in order. The
earliest are the finite ordered sets, and as typical we may take the

finite sets of ordinal numbers,
1st,

1st, 2nd,

1st, 2nd, 3rd,
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and so on. Or using the integers in their ordinal capacity

1,

1,2,

1,2,3
and so on.

The first transfinite well-ordered set is of type o> (see p. 126)

and as typical ve may take the set of all the ordinal numbers,

1,2,3,4, ad inf.

Then comes a set of the type of a closed sequence ;
and then

a closed sequence followed by one isolated point. Thn in turn, a

closed sequence followed by any finite number of isolated points ;

then a closed sequence followed by an open sequence. After these

comes a closed sequence followed by another closed sequence, and

so on.

From Theorem 6, Cor. the following theorem at once follows :

THEOREM 8. Every transfinite well-ordered set has at least one

component of type to, and no component of type *o>. (See p. 126.)

THEOREM 9. Every well-ordered set of well-ordered sets is a

well-ordered set.

For if we take all the elements of any component A of the set

E so formed, they determine a certain set of the well-ordered sets,

viz. those of the sets to which the elements in question belong.
This set of well-ordered sets is itself well-ordered, since it is a

component of a well-ordered set. Thus it has a distinct first set,

and the elements which belong to this first set have themselves

a first, since that first set is well-ordered. This first element

evidently comes before every other element of the original

component A. Thus every component set of the elements has a

first element
;
that is, the set i? well-ordered.

THEOREM 10. If A and B be two well-ordered sets, and we

form the set whose elements are pairs of elements, one from A and
one from B, and we arrange this set in such an order that of two

elements which contain the same element of A, that one comes first

which contains the earlier element of B, while of two elements not

containing the same element of A, that one comes first which contains

the earlier element of A, this set is well-ordei'ed.

For it certainly has a first term, viz. that one which consists of

the first term of A with the first term of B. Further, ifK be any
component of the set, the elements of A which occur in K, forming
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a component of A, have a first terra, say a, and the elements of B
which occur in K in combination with a form a component of B
and have therefore a first term ft. The term (a, ft) then is an

element of K and, by definition, comes first in order in If, so that

K has a first term: thus the set in question is well-ordered. Q.E.n.

COR. If we combine any finite number of sets A, B, C, ... in

the manner indicated in order, the resulting set is well-ordered.

This theorem can not be extended to a more than finite number

of sets. Suppose we have a sequence of well-ordered sets each of

order 2, for instance each consisting of the two figures (0, 1). The

set formed will consist of zero and all the binary fractions in their

ascending order. Take the component consisting of all the binary

fractions, the first element of A which occurs is 0, and so it is of

B, and so of C, and so on
;
the element

0000

however does not occur in the component in question, so that the

argument used in the proof of the preceding theorem breaks down.

81. Multiple Order. A set is said to be in multiple order

when there are various characteristics, each of which enables the

set to be arranged in mixed simple order, grouping together all

elements which possess any one of these properties in the same

degree. When this is the case, and conversely these characteristics

determine each element uniquely, the order is said to be pure,
otherwise it is said to be mixed. The characteristics may, or may
not, themselves have an order. Thus, for instance, the set of all

closed intervals on the straight line may be arranged in double

order, characterising them by means of the position of their middle

points and their length ;
these characteristics are not given in

order. If, however, we determine an interval first by the position
of its left-hand end-point and then by that of its right-hand

end-point, the characteristics are given in order.

The set of all sets of closed intervals on the straight line may
be arranged in w-order, the characteristics being the positions of

the left and right hand end-points of the intervals taken in

countable order.

The only multiply ordered sets which have been seriously

investigated are finite sets. Here the connection of the subject
of w-ple order with the theory of sets of points in n-dimensional

space is well brought out*. Suppose for simplicity we have a

*
Viyanti, Ann. di Mat. Series 2, Vol. xvir.
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doubly ordered set of in elements. Take a rectangular trellis

( 73) and mark the trellis-point (t,, t,) corresponding to any
element which stands in the t,th and t.th places respectively,

according as we order the set in the first or second of the given

ways. We thus get a set of in trellis-points having the same

ordinal type as the set given.

In general, taking an n-dimensional trellis, we can assign a

finite set of trellis-points to characterise any finite ordinal type of an

n-ply ordered set.

,

If 5lt 2 ,
... sn be the number of trellis lines in the various

directions on which points of the representative set lie, ,,,,... sn

are called the dimensions of the set. The dimensions of a multiply
ordered set are as characteristic as its potency: these characteristics

however do not determine the ordinal type, as in the case of a

simply ordered set. The number <(m, n) of n-ply ordered types

of potency m is clearly connected with the number V
9 St , ^ of

types of potency m and dimensions sl ,st , ... sn by the formula

i=m tt-m sn=m .

*(m,n) 2 2 ... 2 F (">

,=! ,=! =! '

This formula has been used* to determine tf>(m, n) after

obtaining formulae for calculating F^sii.^. On the other
hand Cantor^, who was the first to investigate the subject,
calculated < (m, n) directly, by means of recurring formulae.

* Hermann Sehwarz, Ein Beitrag zur Th. d. Ordnunggtypen, Halle a. S. 1888.
t Cantor, Zrihchr. /. Phil. Kritik, Vol. xcn. (1888).



CHAPTER VII.

CANTOR'S NUMBERS.

82. Cardinal numbers. In Ch. IV we discussed the

various potencies which could occur on the straight line, and found

that, as. far as the present state of knowledge extends, these may
be characterised by the positive integers, together with two new

symbols, for which we took the letters a and c, a denoting the

potency of a countably infinite set, and c that of the continuum.

In the preceding chapter we have seen that there is a funda-

mental region F, in which there is a potency KI which is different

from any of those mentioned, unless it is possibly the same as r.
;

this latter point has not yet been settled*.

These are particular cases of a great theory of potencies and

of cardinal numbers in general, due to Cantor, and which has

occupied numbers of mathematicians ever since : the theory, at

first apparently simple, is by no means in a satisfactory state, and

it will only be possible in this chapter to give a short account of

it, avoiding controversial points, and giving references as to the

literature.

83. The word set has come to be used in general for what

Cantor called a well-defined set. The following is the definition

originally given by Cantor :

"Ein Inbegriff von Elementen, dieirgend welcher Begritfssphare

angehoren, nenne iei\ wohldefinirt, wenn auf Grund ihrer Definition,

und in Folge des logischen Princips des ausgeschlossenen Dritten

es als intern bestimmt angesehen werden muss, sowohl ob irgend

ein derselben Begriffssphare angehoriges Object zu der gedachten

*
Bernstein, Jahresb. il.-d. Mathvgg. 1905, p. 449, gives a sketch of the method by

which he hopes to obtain a proof that fc*j=c.

Y. 10
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Matmichfaltigkeit als Element gehort oder nicht, wie auch ob

zwei zur Menge gehorige Objecce, trotz formaler Unterschiede in

der Art des Gegebenseins einander gleich sind oder nicht*."

Here Cantor emphasizes the fact that in any logical and uore

especially mathematical thinking, we must confine our ideas to

some particular field; the collection -of all the distinct objects of

thought which belong to that field we shall call the fundamental

region. The objects in question are called the elements (points) of

the fundamental region. It will no longer be assumed that the

fundamental region is the straight line.

If a law be given, of such a nature that it enables us to divide

all the elements of the fundamental region into two distinct classes,

those which do, and those which do not, satisfy that law (the latter

of those classes possibly containing no elements at all, the so-called

null-set), the former of these classes is called by Cantor a set.

There are reasons for .modifying this definition; it may be

contended that it should be postulated that the second of the

above classes must also exist, that is to say, the fundamental

region itself is not to be regarded as a set unless there is another

fundamental region containing thefirst fundamental region together

with other elements. For most practical purposes this distinction

is immaterial, since such an extended fundamental region can

ne found, but it is perhaps & proper law of thought that we cannot

regard a lot of objects in their totality unless we can get beyond
them.

Cantor adds a very important gloss to his definition. The
law need not be such that, given any element, we can actually
determine whether or no that element belongs to the set, but it

must be such that there can be no doubt that the element either

does, or does not, belong to the set. Thus, at the time Cantor

wrote, it was uncertain whether the number TT was algebraic or

not; it was however logically certain that every number was
either algebraic or transcendental, so that the algebraic numbers

certainly form a set in the fundamental region of all numbers, and
the remaining numbers, viz. the traiiscendentahiumbers, also form a
set It has now been proved that TT is transcendental, but this does
not affect the case at all

;
the algebraic numbers form a set,

although no general calculus is known by which we can differen-

tiate the algebraic numbers from the transcendental.

* Math. Ann. xx. p, 14.
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A great deal of the difficulty with respect to the development
of the theory of sets iu general turns however on the exact

weaning to be applied to the terra t(

logically determinate*."

84. If two sets A and B in any fundamental region are such

that they can be brought into (1, 1 ^Correspondence with one

another they are said to be equivalent"^, or to have the same

potency*. (Cp. Ch. IV.)

We write this symbolically A B.

It is completely, in accordance with this definition that we say
that in the theory of potencies we regard the elements of the set

as indistinguishable, or, more properly, as undistinguished from one

another^ . It must not be supposed that the elements of a set can

*
Cp. Hobson, "The General Theory of Transfinite Numbers," Proc. L. M. S.

Series 2, Vol. in. Part 8, p. 182.

t In this connection it must be emphasized that there are difficulties in

accepting the statement that every set has a potency. Different explanations of

this are given by Hobson, loc. cit., and Jonrdain, Phil. Mag. vn. Ser. 6, p. 66

(1904). While this question is unsettled, Cantor's proof that there is bo greatest

potency (Jahreab. d. d. Mathv$g. i. p. 77 (1890); see 22, p. 43, and Russell,

346, p. 365) cannot be regarded as convincing. The proof turns on the fact that,

if E be any fundamental region of potency E, it is impossible to set up a (1, 1)-

correspcndeuce between all its elements and all its sets of elements. Now each

element of E constitutes a set of potency 1, thus, if all the sets of elements ofE can be

considered an definimj a potency, that potency is
( 85) greater than K- A discussion

of the difficulties which arise from this proposition will be found in Russell, sec

also footnote f, p. 15f.

J Cantor, horchardt's J. LXXVH. p. 257, LXXXIV. p. 242. If .t and B are so

defined that there is a particular (1, l)-correspondence connecting them, they are

said to be simply equivalent. It may be, however, that, although the existence of

(1, l)-correspoudeuces connecting A and B is implicitly involved in the definition. ,

these correspondences form a set of potency n greater than 1 which is so defined that

it is only possible by using the law of arbitrary choice to pick out one of the core-

spoiidences. In this case A aud B are said to be multiply (ft-ply) equivalent.

Logically multiple equivalence means less than simple equivalence, and,

whenever possible, proofs should be made to depend on simple equivalence, or at

least the multiplicity of the equivalence should be kept in view. For instance,

proofs depending on the choice of a single unit involve c-ple equivalence.

It is easily proved that if

f -/.' (Mult, a),

and B ~ C (Malt. 0),

then A ~ C (Mult. a/3).

In the proof of the Cantor-Bernstein-Schroder Theorem given in the text, if we

bring out explicitly the multiplicities of the equivalences, it is easily seen that if A

is a ply equivalent to 7^, and li ia /S-ply equivalent to A lt then A is o^-ply

equivalent to K. Beiustein, "Beinerkuug zur Meugenlchre," G'ott. Hachr.

1904, Heft 6.

See pp. 76 and 121. Cantor, Math. Ann. XLVI. 1.

102
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be actually indistinguishable, which is inconsistent with the logical

use of thu plural at all*. What we mean is that those charac-

teristics which enable us to perceive the plurality of the elements,

though involved in the definition of the set, are in themselves

irrelevant, and may be disregarded.

THEOREM 1 . (THE CANTOR-BERNSTEIN-SCHRODER THEOREM.)

// a set A is such that it has a proper component'A l which is of

tlie same poteitcy as a set B, while A is itself of the same potency as

a proper component Bl of B, then A and, B have the same potency^.

For since there is a (1, 1^correspondence between^A and Bl}

iu this correspondence there

will be a proper component
B3 of Bi which corresponds

And since A l is in (1, 1)-

r-orrespondence with B, this

gives us a (1, ^-correspond-

ence between. B and J?a .

In this there will be a proper

component Bt of 5a in (1, 1)-

correspondence with Bt
. In this there will be a proper component

B< of Bt in (1, 1 ^correspondence with B3 , and so on. (Cf. Fig. 16.)

This series of sets Bly B3,... tannot come to an end after a

finite number of stages, because at any stage having found Bn ,

there must be a next set Bn+l since there is a preceding set

.Bn_i, and these have the same potency, viz. that of It or of Bt .

Let D denote the inner limiting set of B, .#,, B.2 , ...
;
it may

be that D contains no points, otherwise D is a proper component
of each Bt . Then

Here each set in brackets really contains points, since each Bi
is a proper component of B^.

Writing E for the sum of all the sets (B^ - #2n) and F for

the sum of all the sets (5m .#,_,), we have

B^D +E+F.
*

Russell, 345, p. 363.

t Bernstein's proof. Borel, TMovie (let Fonctioru, p. 105. G. Cantor, Zttchr.

f. Pltilotophie, Bd. xci. E. Schroder, Jahretb. d. d. Mathvgg. Bd. v. (p. 81).
E. Zerraelo, Gott. Naehr. 1901, pp, 1-6.
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Now in the (1, ^-correspondence of Bn_ with B, (J3,- 5,) was
in (1, 1) correspondence with (B - ,) Similarly (J54

-
J5,) was in

(1, ^-correspondence with (52 -/?,), and therefore with (5 -,),
and generally (Bm - B.m+1 ) with (5.^ - BM^) and therefore with

Thus to any point P of (B - BJ there is a point P1 of ( 2
- JB3),

a point P9 of (^-P,,), ... a point Pn of (J5W-5W+1 ), ... and all

these points are distinct from one another. That is to each point
P of (B 5,) there are a points of F.

Since we can set up a (1, 1^correspondence between the points

P,Pa,P2 , ... and P^P,,...
it follows that (B B^ + F- is in (1, l)-correspondence with F, am*

therefore B is in (1, 1 ^correspondence with Blt. and therefore

with A. Q.E.D.

Ex.1. By this theorem we can, for instance, prove, as follows, thai the.

straight line with an interval as element is ofpotency c.

It is clearly only necessary to prove the theorem in the segment (0, 1).

Consider any interval (X, F) in the segment (0, 1), where, using the binary

notation,

X

and X is less than Y
t
and let

Z
This gives us a (1, 1Correspondence between all the intervals (X, Y) of the

segment (0, 1) and all the ^-points. These latter form a proper component
of the segment (0, 1), since, if #j is 1, y}

cannot be 0, so that the interval

(1, '11) contains no Z-point.

But, if .T! is and yt is 1, the remaining figures may be any we please, so

that every point of the segment (Ol, -Oi), or (-01, !), is a Z-point. Thus
there is a proper component of the Z-points in (-1, ^-correspondence with the

segment (0, 1
). Thus, by the preceding theorem, the Z-points* have the potency

c, and therefore the same is true of all the intervals in the segment (0, 1). Q. B. D.

85. If we have two sets A and B, then there are four

mutually exclusive logical possibilities :

* The Z-s&t and its complementary set are two interesting sets of intervals.

Each interval is bounded at due end by an isolated end-point of each set, and at

the other by a semi-external point of each set. These end-points must, however,

be considered as belonging to the complementary set, sinoe they correspond to

values X^Y. Disregarding this, the two sets of intervals are reflexions of one

another in the point -1. Amalgamating the pairs of abutting intervals of th'c two

sets, we get an infinite tet of intervals having no isolated end-point* and no external

points, but only tern-external point*, in the segment (0, 1).
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(1) There may be a component* A^ of A in (1, 1 ^corre-

spondence with B, and also a component /f, of B in (1, 1)-

correspondence with A ;

(2) there may be such an A lt but no such Bl ;

(3) there may be such a Blt but no such A } ;

(4) there may be no such A 1} and no such 5,.

It is clear that there are no other possibilities.

In the first case, by definition, or by the Cantor-Bornstein-

Schroder Theorem^ A and B have the same potency and we write

A ~ B or A = B, A being the symbol used for the potency of the

set A. In the second case A is said to have a greater potency

than B, A > B\ in the third case B has a greater potency than A,

and A is said to have a lesser potency than B, A < J8t- The

fourth case alone presents any difficulty ;
it is clear that, if there

are such sets A and Bt they have not the same potency, nor

is the potency of either greater than that of the other ; but,

whereas it is easy to give sets A and B illustrating any of the

first three cases, no sets are known illustrating the fourth case J,
and

it is possible that the case does not really exist at all
;
at present

however this has not been proved. If the fourth case could be

proved not to exist, the potencies of sebs would be comparable
in respect of magnitude, and we could pioperly speak of potencies
as 'numbers ffnd set up a calculus of such numbers. As it is such a

calculus has been worked out, but it labours under the difficulty

above explained.

86.. The addition and multiplication of potencies.

Addition. Let A and B be two sets, in the same fundamental

region, and not having any common element, and -let their potencies

*
Proper or not. This point constitutes the difference between this and

Borel, TMorie det Fonctions (1898); p. 102.

t Here it should be remarked that when we have the two relations A^B and

B^A, we may at once deduce the logical' conclusion A = B. Any reference to the

Cantor-Bernstein-Schroder Theorem at this point is an error.

J It has been suggested by Beppo Levi, "Intorno alia teoria degli aggregati"

(Lamb. Itt. Rend. n. 35, p. 863), and Hobson, Joe. cit., that this case iuay occur when
a set O is in (1, -^-correspondence with a set T, that is, when to each element of G
there corresponds a non-countable set of elements cf F of constant potency y. We
had a case of this in 73, where G is the set of all simply-ordered sets, and V the

set of all the binary order-fractions; 7 is here the potency of all the different

arrangements of the natural numbers in countable order. This difficulty only
occurs if we restrict the word equivalent to mean simply equivalent. Such a set

<3 is multiply equivalent to F. (See footnote J, p. 147.)
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be a and b, then the sum (a + b) of the two potencies is defined as

the potency of the set (A + B) consisting of all the elements of

the two sets together.
More generally if k be any potency, and we replace each

element of a set K of potency k, by a set of elements, the sum
of the k potencies of these sets is defined to be the potency of

the whole set of elements so obtained. It can easily be shewn

that the sum of any number of potencies obeys the commutative

and also the associative law.

Multiplication. Let A anil B be two sets as before of potencies

a and b. Form a set G of pairs of elements, one from each of the

sets A and B; the potency of this set is defined to be the product
of ab.

More generally ifK be any set of potency k, and we have a set

II of potency p corresponding to each element P of K, then if we
form a set each of whose elements is a set of potency k of elements

chosen one from each of the above sets IT, the potency of this

whole set is/said to be the product of the k factors p*.
The product obeys the commutative, associative and distributive

laws.

Ex. 2. We may use this definition to prove that the product of all the

integers
1.2.3... =c.

For to find 1.2.3..., we must take the natural numbers, and, in place
of each, say n, insert n elements, say (, 1), (n, 2).... We may do this

conveniently in the form of a wedge,

(1,1) (2,1) (3,1) (4,1),

(2, 2) (3, 2) (4, 2),

(3, 3) (4, 3),

(4,4)

We must now form a set whose element is determined by choosing one

from each of the columns of this wedge ; by definition the potency of such a

set of elements will be 1.2.3....

We can form such a set of binary fractions by replacing all the chosen

brackets in the wedge (1) by ones, and all the non-chosen brackets by zeros so

as to form a new wedge (2), the figures of which we read off in the usual way,
fi-om top to bottom of each column in succession from left to right

The points of the segment (0, 1) which are not obtained in this way are

then easily seen to fill up a set of black intervals which may be obtained as

follows. Bisect the segment (0, 1), and blacken the left-hand interval Then
divide the white segment into 22 parts and blacken the extreme intervals on

the left and right. Then divide each of the 2 white segments into 2s parts

and blacken the extreme intervals in each segment, and so on.

Schocntiies, Her. p. 9 (1900). Whitchead, Am. J. of kuth.. Vol. zxiv. (1902).
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These abutting interval correspond to a set of non-abutting intervals, the

largest of which reaches from the origin to the point '0 01 001 0001 .... Thus
our set is a perfect set nowhere dense* and has therefore the potency c, which

proves the result utated.

A particular case of multiplication is the process of raising to

a certain power ;
here' the sets II are to be taken, all of the same

potency p.

Ex. 3. The method used in Ex. 2 may be used to prove that 2" *--e.

Here, instead of a wedge, we have two rows of brackets,

(1, 1) (1, 2) (1, 3) ......

(2, 1) (2, 2) (2, 3) .......

Substituting 1 for each chosen bracket and for every other, and reading off

the columns from top to bottom m succession from left to right, we again get

a perfect set, whose black intervals are obtained by dividing the segment

(0, 1) into four parts and blackening the extreme parts, and repeating this

construction in the two intermediate segments, and so on.

Ex. 4. Similarly it may be shewn that =
c, for every positive integer .

Or the following method may be employed, assuming the results of Exs. 2

and 3.

If instead of two rows as in Ex. 3, we take three rows, and proceed as in that

example, we get a %et of binary fractions whose potency is, by definition, 3".

Confining our choice to the first two rows, we get the set of Ex. 3 as a

component of our set. Thus
3^c.

On the other hand, if in the wedge of Ex. 2 we confine our choice to the

first three rows, we get a component of the set of Ex. 2 of potency 3. Thus

3"^c.
It follows that

3 = c.

Ex. 5. Similarly, taking a countably infinite number of rows,

a^c.
On the other himd, corresponding to each choice we can assign a continued

fraction

which is uniquely determined by the choice of the n
tth bracket in the first

column, the ;i2th in the second, and so on. Thus

o < c

It follows that

Grouping these results together,

r = Lt n ! - 2a = 3
H=W

* The content, being Lt (), ia zero.
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87. When we restrict ourselves to the potencies of well-ordered

sets the difficulty referred to in 85 disappears. It was shewn

ID the preceding chapter (p. 140) that, if A and B are well-ordered

sets, A is similar to B or to a segment of B, or else B is similar to

a segment of A, Thus the potency of A is either equal to, less

than, or greater than that of B. The potencies of the earlier

well-ordered sets in order of magnitude are :

1, 2, 3, n, n + \,

The next in order is a ( 18), which is denoted by Cantor by
the symbol N (Aleph-null, Aleph-zero); tuen follows &, since

any segment of the set of potency X, defined in. 79 has, by
Theorem 25, Ch. IV, p. 56, one of the above as potency, while

K!>NO.
These numbers form the beginning of the series of Cantor's

cardinal numbers, properly so called, because there can be no

doubt as to their comparability with respect to magnitude. We
have now to show how this series is to be continued. To do this

it is best to define Cantor's ordinal numbers

88. Cantors ordinal numbers are none other than the ordinal

types of well-ordered sets*, or, if we prefer to say so, they may be

taken to characterise those types.

As in the case of the Cantor cardinal numbers, we have a right
here to speak of ordinal numbers instead of ordinal types, since,

given any two of the numbers, say a and b, they correspond to the

ordinal types of sets A and B such that either A and B are similar,

or A is similar to a segment of B, or B to a segment of A
;
in

the first case we say that a = b, in the second a < b, in the third

a > 6. Thus the ordinal numbers themselves are naturally arranged
in simple order, it will be shewn ( 89) that they form a well-

ordered set.

By what has been said in the preceding chapter the series

of ordinal numbers begins, as the cardinal numbers do, with

1, 2, 3, ...... n, * + l,

Instead of a however we now have o> ( 71 and footnote*, p. 126).

Ill any fundamental set, e.g. the straight line, in which there is

a well-ordered set of type a>, we only have to alter the order

of the set, removing the first element and placing it at the end

*
Cantor, "Grun/Usgen," 8, Math. Ann. xi,ix. 12. Russell, Chap, xxxvxil.
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and we get a set whose ordinal type is the next in magnitude
after &>, this we denote* by w + 1.

In this way the series of ordinals may be continued,

w-f-1, o> + 2 a> + , + n+l, .;

All the corresponding sets are countable; without rearrangement

such sets exist on the ordered straight line, for instance in Fig. 4,

p. 24 we may take as representative of any one of these the

sequence in the segment (0, 1) followed by a finite number of

points in the segment ('1, '1
s
).

This figure gives us convenient

sets representing each of the succeeding numbers

o>.2, w. 2 + 1, ... 0.2 + n/ o>.2 + n+l, ...

CD. 3, C0.3 + 1, ....0.3 + n, w.S

u>.m, a>. wf-1, ...

the set to.m + ra consisting of all the points to the left of the

point 'Pn followed by the next n points. The ordinal type of the

set 2*8 itself is denoted by w8
. Fig. 5, p. 24, gives us convenient

sets representing the succeeding numbers whose types are of the

form o>* + aw*"1
4- ba>k

~* + ... , while the ordinal type of the set E
in that figure is denoted by w".

The method, as indicated at the end of 11, enables us to find

always higher numbers, but we shall require more and more

diagrams. On the other hand, using these ordinal numbers as

indices for the derived and deduced sets of a set whose first derived

is more than countable, we have corresponding sets of elements in

the fundamental set F, described in 79. This fundamental set

may serve us most conveniently for characterising the numbers

which next follow in succession.

The derived sets .of E are denoted by the indices 1, 2, ..., n, ...,

the deduced set of these by o>; the derived sets of Em by o> + l,

<u-f 2, ..., eo-f n, ..., and the deduced set of these by a> + o> or a>.2;

and so on. The set deduced from E* t
E

. z , ..., Ev , n has the index

tu
2
,
that deduced from E^, E^ t ... t E^ the index w", that deduced

from the E's with indices w", o>"- , ..., <o*-* the index 01"*, and that

deduced from the E"a with indices o>
w

, &>"*, CD"*, ... the index to"".

For the set deduced frprn the sets with indices a>
w

,
a>
wW

,
a)"

w
, ...

* This notation, as well as that used for the succeeding numbers, enables us to

dispense with the introduction of new symbols till a much later stage. It agrees
with the theory of ordinal addition

( 91) and multiplication ( 92); a+/3 is the
ordinal type of a set of type a followed by one of type ft, and o/3 of a set consisting
of a set of type /3 of seta of type a.
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the notation breaks down, but the principle can be carried on

ad infinitum. This principle, or more properly these two principles,

are (1) to every number a. there is a next number*, which shall be

denoted by a -f 1
; (2) to every infinite set of numbers without

a greatest number there is a next numberf which shall be called

a "
limiting number "

(Limeszahl).

The ideal symbols defined in this way are called Cantor's

transfinite ordinal numbers of the first potency Ko, or of tfte second

class. The sets corresponding to them are all countable, and sets

of points of each of these ordinal types exist on the straight line.

It was pointed out in the preceding chapter that the ordinal

types of such sets could be represented by diagrams, or by corre-

sponding binary numbers.

Fig. 17 is one of the diagrams representing the natural order

of the derived and deduced sets up to E^ inclusive, the countable

order being obtained from the diagram

o) 1

2o>

3o>

3

o>4-2

2o)4-l

4o)

4

o)4-3

2o>4-2

3o)4-l

5o>

5

0+4
2o> + 3

3o> + 2

4o)4-l

the columns being read in order, thus

o>, o>, 1, 2w, 2, w + l, 3o), 3, 0)4-2, 2o>4-l, 4o>, 4, a>4-3

Fig. 17.

The number equivalent to the diagram is

1 11 100 1101 10010 100000 1101011 10010010....

If we start with any generic binary order-fraction, or, which is the

same thing, with any generic order-diagram, we shall not in general
*

Corresponding to derivation,

t Corresponding to deduction.



156 CANTOR'S NUMBERS [CH. vn

have si corresponding Cantor number. The only sets whose ordinal

types are Cantor numbers are well-ordered sets
;
a set which corre-

sponds to a generic binary order-fraction is only simply ordered.

89. The next Cantor ordinal after all those of the first potency
is H, the ordinal type of the set of all the derived and deduced

sets of a' set whose first derived is more than countable. Sets

representative of this number (having it as ordinal type) exist as

we know in the fundamental set F, described in 79.

In the same way in which we formed the ordinals of the

second class, by rearrangement of a sequence in the straight line,

we can now form a set of ordinal type fl + 1 in F, and generally

in F we can form all possible well-ordered sets of potency &.
The corresponding ordinal numbers are said to form the third

class of transftnite ordinals.

It is to be noted that these numbers of the third class have

not been as yet used to any great extent, and that many people

have scruples as to using them at all. The same objection which

is made to these numbers has been made to the higher numbers,

viz. their existence as ordinal types of sets in any practical funda-

mental region, e.g. in the straight line, has been doubted*. As
to the doubts thrown on the existence and utility of these numbers,

and of the numbers of the fourth and higher classes, the reader

must be referred to, the literature on the subject, which is too

controversial to find a place heref.

It remains only to add that CantorJ continues his series of

ordinal numbers beyond those which correspond to the potency {{,,

justifying the procedure in two different ways. The first way is

by the hypothesis that the two principles mentioned may them-

selves be used to set up an ideal set of numbers, and that such an

ideal set of numbers is a collection of proper objects of thought
and form of themselves a proper fundamental region, provided

only the system so formed is in accordance with the laws of

logical thought. The second way is based on the hypothesis
that well-ordered sets of higher and higher potencies do exist,

* The proofs of the theorem S,^c supplied by Bernstein in hid dissertation

(
8 (1900), see also Proc. L. M, S. Ser. 2, Vol. i. p. 243 and 73 and 88 supra)

and Hardy (Quart. J. of Math. xxxv. p. 88, 1903), depending as they do on multiple

equivalence, do not serve to set up a definite linear set of points of potenry Kj ,

in the sense in which Fig. 2, p. 17, does for a set of ordinal type w.

t Russell, Hobson toe. cit., Zermelo, Jourdain, Schoenflies, Bernstein and

Konig, in Math. Ann. LIT. and LX. (1904-5), where other references will be found.

J Cantor, Math. Ann. xux. (1898) ; Schoenflies, Chap, vn ; Joardain, Pfc.7.

Idag. (1904-5).
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and that, from the properties proved for well-ordered seta in th

preceding chapter, they may all be considered as segments of

one great well-ordered set, which itself may be taken as funda-

mental region.
Whether or no the Aeries of ordinal numbers be assumed to

have the unlimited extent ascribed to it by Cantor, we can easily

prove that it is a well-ordered set. For any component of it either

has 1 for its first element, or it defines a second component, con-

sisting of all the ordinals which precede every element of the given

component. If ft be any number of the given component, there is

a fundamental set in which there is a well-ordered set of the type

ft, and this set will have, as proper components, segments of all

the ordinal types of the second component, and will therefore also

have a component, proper or not, whose type is the next in order

after these, viz. + 1 if they have a last one a, or the next limiting

number a if they have no last number. This number a+1, or a,

will then belong to the given component, and between it and the

numbers of the first component there can be no other number,
thus it is the first number of the given component. Thus, by
definition, the ordinal numbers form a well-ordered set.

90. Assuming the existence of Cantor's scheme of ordinal

numbers to be accepted, it gives us a means of determining the

system of cardinal numbers already referred to, the so-called system
of Aleph-numbers or Cantor's cardinals. Just as all the ordinals of

the second class correspond to sets of potency a or No, while the

potency of these numbers themselves is & and is greater than tf ,

so the ordinals of the third class correspond to sets of potency tf,;

and these numbers have a greater* potency tf2 and so on. The

indices of the Aleph-numbers may themselves be Cantor ordinals

as great as we please.

91. The theory of ordinal addition*. The general theorem

given as Theorem 9, of the preceding chapter Every well-ordered

set of well-ordered sets of elements, regarded as an ordered set of

elements, is well-ordered must be taken into account in forming

any system of transfinite ordinal numbers; in Cantor's system
it is the basis of the theory of addition. The order of such

a set of elements must be considered known in terms of the

*
Cantor, Math. Ann. XLVI. 8 (1895), "Grundlagen," 3. Beside addition and

multiplication, Cantor considers in tl.c Grundlagen subtraction, division,

numbers. See also Russell, 294.
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orders of the separate sets
;
in the special case when all the sets

are finite, this is embodied in the fact that the ordinal number

of the final set is the sura of the ordinal numbers of the com-

ponents in order.

In general the sum of the ordinal numbers of the components in

the order given by the first well-ordered set is defined to be the ordinal

number corresponding to the final set.

For instance, (1, 2, 3), (4, 5), (6, 7, 8) is a finite ordered set of

ordinal type 3 of finite ordered sets
; regarded as an ordered set of

elements, in which each element of any component set retains its

place with respect to the others of that set and precedes every
element of any subsequent set, viz. (1, 2, 3, 4, 5, 6, 7, 8), it is a

finite ordered set of ordinal type 8 = 3+2 + 3.

It is a mere accident, depending on the fact that the sets are

finite, that, the sets could be added in any order, that is to say

that cardinal and ordinal addition are the same; this will be

found not to be true of transfinite ordinal numbers: the commutative

law only holdsfor finite ordinal numbers.

The associative law however will be found to be perfectly general
in its application. In the case of transfinite as well as finite

ordinal numbers it is in fact an immediate consequence of the

definition of ordinal addition, that if a set be divided up in two

different well-ordered manners into well-ordered components, the

two sums so obtained are equal. The set whose ordinal type is

represented by (a + 6 + c) will have the same elements in the

same order as one whose ordinal type is represented by

(a + b) + c or a + (b+ c).

This proves the associative law,

a + (b + c)
= (a + 6) + c.

It follows that any addition may be regarded as a certain

ordinal number of repetitions of the process of adding two ordinals ;

since however the commutative law does not hold, this point of

view does not afford such a simplification as it does in the case

of finite integers.

The order in which two numbers are to be added is con-

veniently determined by speaking of the first of the two sets

as the augendum and the second as the addendum. Suppose, for

instance, a set of type w is the augeuduin and a single point is the

addendum. The final set will be of the ordinal type of a closed

sequence, which, as in 88, may be denoted by + 1, we do not

need to introduce a new symbol.
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On the other hand, if the augendum is a single point and the

addendum a set of ordinal type o>, we have a set whose ordinal

number is 1 -f- <u. This gives us a new theorem connecting the

finite integers with o>, for the final set is of the type of an open

sequence; hence

1 -r a) = o>
s|t

b> 4- 1.

Hence, generally,

n 4- d> = a 4= o + w.

This shews that the commutative law cannot be assumed to hold.

When we are dealing with finite numbers the process of

addition always leads us to new numbers, but we see from the

above that when we are dealing with transfinite ordinal numbers

the process of addition may only lc?d us back to one of the original

numbers.

92. The law of ordinal multiplication. The law of

multiplication of ordinal numbers in order has not as yet been

defined except when the number of factors is finite*. If we could

define in a satisfactory manner the ordinal product of factors, we

should be able to arrange the continuum in the form of a

well-ordered set, which has not yet been done (cp. Ch. VI,

concluding remarks). The law of multiplication of a finite number

of factors depends on Theorem 1 of the preceding chapter, and it

was pointed out at that place that the process could not be extended

to an infinite number of sets.

DEF. Given any finite ordinal number n of well-ordered sets,

form the product set as in cardinal multiplication, by replacing

each set by any one of its elements, and taking the set of all suck

possible different combinations. This set can be arranged in such

an oi'der that given two terms having the same element in each of

the first m places, but different elements in the m+lth place,

that term whose m + Wt element comes before the other in the

m + 1th well-ordered set, is taken to precede the other term. By
Theorem 10, Chap. VI the set is then a well-ordered set ; its ordinal

numbei' is defined to be the product of the n ordinal factors in

order.

In the case of two factors, the first of which we may call the

Exponentiation however can be satisfactorily defined, as exemplified by tbe

number w", the ordinal type of the set of points in Fig. 5, p. 24. Cantor, Math.

Ann. XLIX. 1820. Schoenflies, pp. 47, 48. Hausdorff, Jahresb. d. d.

xin. (1904), p. 569.
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multiplier and the second the multiplicand, the rule is, tnke the

first terin of the multiplier and combine it in turn with each term

of the multiplicand in order, and so with each term of the

multiplier in order
;
the set of all such pairs in order is well-ordered

and its ordinal number is the product of the two factors.

Another form of the definition of multiplication of two factors

is the following : Take each term of the multiplier in order and

replace it by a set similar to the multiplicand, the well-ordered

set so obtained has for ordinal type the product of the two

prdinal types in order.

Symbolically we place the number corresponding to the

multiplier on the right and that corresponding to the multiplicand

on the left*, that is, we read the product symbol from right to left.

Thus o>. 2 is the ordinal type of a set got by placing instead of

each of the elements of a set of ordinal type 2 a set of ordinal type

(a, and this is the same therefore as o> -f a>. But 2a> is the ordinal

type of a set got by putting in the place of each element of an

open sequence a pair of elements, so that 2 . a> is the same as o>.

2 . a) = o) 4= "> 2,

* This notation is so far adopted that it does not seem advisable to revert to

Cantor's original notation in which the product symbol is read from left to right.



CHAPTER VIII.

PRELIMINARY NOTIONS OF PLANE SETS.

93. When we come to deal with points which do not lie in

a straight line, the fundamental region will now be taken to

be a plane, or a flat space of three or more dimensions, just as

in Chs. I V it was the straight line. The full discussion will

in all cases be given for the plane, in general it will only need

small verbal alterations far higher space. Later on the funda-

mental region may be taken to be a set of points contained in

space of a finite number of dimensions, this will include the special

case of ordinary curved space. The theory must not be considered

to be applicable without fresh investigation to a fundamental

space of an infinite number of dimensions; to this question we
shall return in the Appendix.

94. Just as the straight line was to be considered as the

geometrical representative of the arithmetic continuum, so the

plane is to be regarded as the geometrical representative of

the two-fold arithmetic continuum, each point of the plane corre-

sponding uniquely to two numbers in order, (a^, a^), called its

coordinates, and conversely each pair of coordinates determining

uniquely a point of the plane; the order of the coordinates is

formally material, the points (a4 b) and (b, a) being different. It will

generally be assumed that the coordinates are ordinary rectangular
Cartesian coordinates, giving the distances of the point from two

perpendicular straight lines, but this is by no means essential, and

the idea of coordinates in the plane, or in n-dimensional space, is

as independent of the idea of measurement as it was in the

straight line. Often it is convenient to use ordinary plane polar

coordinates, r and B, r being the distance of the point P from

a given point or origin 0, and 6 the angle made by the radius

vector OP with a fixed direction.

Y. 11
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95. The question of the dimensions of the fundamental region

is one of interest. The plane is commonly said to be of two

dimensions, since it is the geometrical representative of the two-

fold arithmetic continuum
;

it is however shewn in 96 that

the points of the plane (or numbers of the two-fold arithmetic

continuum) can be arranged in simple order, and the question

arises, are we justified in speaking of the plane as two-dimensional

and what do we mean by the dimensions of the fundamental

region ?

Riemann, in his IIalilitationsschrift (1854), assumed explicitly

that the essential characteristic of a variety or manifold of n dimen-

sions was that the position of a point in the region required
n numerical determinations or coordinates. According to this

conception the plane would have the same right to be denominated

a one-dimensional variety as the straight line. Riemann had

however implicitly assumed that the coordinates were themselves

continuous functions of the position of the corresponding point,

and moreover his mode of generating a variety of n dimensions

is by a continuous process performed on a variety of n 1 dimen-

sions. Continuity was in those days habitually assumed as

something which did not need special reference or discussion, and

it was not till the investigations of Cantor, Dedekind and others

into the meaning of continuity and discontinuity that a proper

concept of a continuous set of points, a variety, manifold, or

region was possible. The idea of the dimensions of a variety, like

the idea of potency, is one which depends on (1, 1^correspondence,
but the idea of continuity enters in the former and not in the

latter idea. It will be seen from 88 that the points of the

plane have the same potency as those of- the straight line, but,

since the correspondence there given is not continuous, it does

not shew chat they have the same dimensions. Subsequent
theorems* however will shew that they have not the same

dimensions, so that the dimensions of the plane are none other

than two. The discussion of these theorems will however be

deferred until some of the characteristic properties of plane sets

of points and plane regions have been developed.

96. Cantor's ( 1, 1 (-correspondence between the points
of the plane, or of n-dimensional space and those of the

straight linef.

Chap. IX, p. 216.

t Cantor, J.fiir Math. LXXXIV. p. 245 (1877).
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Let (xlt #2) be any point of the area of a unit square, and let

xl and #2 be expressed as binary fractions, with an infinite number
of figures, zeros and ones,

V 0.444 ......

this can always be done in one and only one way. Corresponding
to the point (xlt ,) of the plane we take the point x of the

straight line, where
as . el e/ejjft/ e3e3

'

......
;

the point x is then uniquely determined by the point (#,, #2).

Conversely any point x of the straight line, lying between and 1,

determines uniquely a point (xlt x2) of the unit square, whose

coordinates are got from x by taking the figures of x alternately,

a?i beginning with the first figure after the point, and #2 with the

second. This gives us a (1, 1^correspondence between the points
of the unit square. The same principle may be used to set up
a (1, 1^correspondence of the plane and the straight line.

In exactly the same way it may be proved that the points of

n-dimensional space can be put in (1, 1 ^correspondence with

those of the straight line
;

in this case, instead of taking the

figures of x alternately, we must take every nth figure, and so

form the n coordinates of the corresponding point, x
l beginning

with the first figure after the point, #, with the second, x3 with

the third, and so on.

97. Cantor's (1, 1 ^correspondence between the points
of space of a countably infinite number of dimensions and
those of the straight line*.

Here the same principle may be used as before
;
we have only

to take

X\ U . 6n <?rj ('is ...... ,

^==0.6,16,1023 .......

X% = \J . 631 632633 ...... ,

and so on, and, for the corresponding point,

X . 61I 6136n 6
136K 6)i i

,

the indices being obtained as in Theorem 3, p. 35, by writing

down the figures of xlt xy ... in the form of a wedge and. reading
them.in columns.

*
Cantor, J.fur Math. LXXXIV. p. 245 (1877).

112
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COR. 1. All countable sets of points on the straight lineform a

set ofpotency c.

COR. 2. All countable sets of intervals on the straight liveform
a set of potency c.

This follows from Cor. 1, using Ex. 1, p. 149. Hence by
Theorem 4, p. 19, we have the following:

COR. 3. All closed sets on the straight line* form a set of

potency c.

COR. 4. All ordinary inner and outer limiting sets form a. set

ofpotency c.

It follows ftom these theorems that the potency of the points

of space of any finite or countably infinite number of dimensions

is the same as that of the linear continuum, that is c. It also

follows that any plane set G is in (1, l)-eorrespondence with

a certain set on the straight line. It does not however follow that

the characteristic properties of plane sets of points can be deduced

from this correspondence. The chief reason why this is not the

case is that such a correspondence is never continuous.

98. Continuous Representation. Suppose we have a

correspondence, not necessarily (1, 1), between a plane set and

a set g on the straight line, in which to each point of g there

is one and only one corresponding point of Q\ such a corre-

spondence is said to be a representation of the plane set on the

linear set. Let p be a point of g and P a corresponding point
of G.

Describe a circle GP with P as centre
; then, in general, we

cannot find any interval dp with p as centre such that every point
of g in dp has its correspondent inside Op ; when, however, this

is- the case, the representation is said to be continuous at the point

p with respect to the set g.

* The set J, of 79. Borel, Lemons tur la TMorie det Fonctions, 1898, p. 50.

Hence it follows that to assign a certain series of the processes of derivation and
deduction is equivalent to assigning a certain ct of points of potency c on the

straight line for if E be any closed set on which the series of processes can be

performed, without reducing it to a noil-set or to its nucleus, and E' the first of

the derived and deduced sets not obtained by the processes of the series, (E, E') may
be regarded as a paint in the plane, and therefore as a point on a straight line

Since, however, there are evidently c such sets E, we get c such points determining
and determined by, the series of -processes in question. This proves the theorem,
which may be expressed in symbols by the equation

or K^c (Mult. cJ,

(see footnote *, p. 156, and Appendix).
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This definition is the same as saying that the coordinates x^

and xz of the point P are single-valued functions of the coordinate

x of the point p, which are continuous at the point p with respect to

the set ofpoints g.

If the set g is a segment of the straight line, the words " with

respect to the set of points g" may be omitted. If again the

representation is continuous at every point of g, it is said to be

continuous with respect to g, and, if g is a segment, to be a continuous

representation.

Even a continuous representation, however, does not enable

us to deduce properties of a plane set from those of a linear

set, without special precautions. The whole plane can be re-

presented continuously on the straight line, and indeed in such

a simple manner that a point of the plane has in general only one

correspondent on the straight line, and has at most only four;

yet the characteristics of the plane, in particular its form, are in

no sense deducible from this correspondence. On the other hand

a (1, 1^correspondence which is also continuous is of immense

value in enabling us to deduce properties of plane sets of points

from sets on the straight line.

99. Peano's continuous representation of the points of

the unit square on those of the unit segment.

Take a unit square and divide it into nine (or m* where m is

any odd integer) equal squares. Take also the unit segment and

divide it into nine (or m2
) equal

segments. Let the nine squares

correspond to the nine segments,
the order of the segments being
their natural order from left to

right : and the order of the squares

being obtained as follows: begin
at the bottom left-hand- corner,

take the squares straight up the

first column, down the second and

up the third, till we arrive at the

top right-hand corner. The dia-

gonals of the squares in order,

which abut end to end as in

Fig. 18, form a polygonal line of

nine (m
2
) stretches, with nodes

This

! 1 1

' h01234 6 7 8

Fig. 18.

at two (or m 1) points.

polygonal line may be used to denote graphically the order of the
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squares as they correspond to the segments on the straight line in

their natural order.

In repeating this construction in each small square, it is best

for definileness so to turn the figure that the diagonal of that

small square which formed part of the polygonal line just con-

structed, should run as before from the bottom left-hand corner to

the top right-hand corner.

Repeating this construction ad infinitum, the polygonal line

becomes at every stage more and more crinkly, so that the order

of the small squares becomes more and more complicated ;
it is

however always determinate, and is such that adjacent segments
on the straight line correspond to adjacent squares. Any point p
of the straight line which is not a point of division, determines

uniquely a series of segments, one from each stage, lying one

inside the other and having p as their common internal point ;

these determine uniquely a corresponding series of squares, lying

inside one another and having only one common internal point

(Theorem 1, p. 17), this point P we take to correspond to p. If,

on the other hand,/) is a point of division, it determines two series

of segments, one lying on its right and the other on its left, and

each having p as the common end point ; corresponding to these

we have two series of squares, but since the square in one series at

any stage is always adjacent to the square in the other series at the

same stage, both series define the same point P, which is a common

boundary point. Thus again we have to p a single correspondent P.

It is clear that this correspondence is continuous
;
for suppose

An interval of length not greater than d with the point p as

centre will then overlap at most into two adjacent intervals at

the A'th stage ;
therefore two at most of the corresponding squares,

and these adjacent to one another, will suffice to contain a cor-

respondent for each internal point of the interval dp . Thus a

circle with centre P and radius e>
1r

will certainly enclose amk *

correspondent for each internal point of dp . Now whatever circle

Gp be described with P as centre, we can determine k so that

f is less than its radius
; taking the length of dp to lie between

f/l'

jj5f5
and ^ it follows that the correspondents of every point of df

lie inside Cj>. Thus the correspondence is a continuous one.
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On the other hand it is not a (1, 1^correspondence. For

though every point of the square which does not lie on a dividing
line clearly has only one correspondent, yet a point Q lying on

a dividing line but not at a corner of a square at any stage will

have two different correspondents on the straight line, one for

each series of squares lying one inside the other and having Q as

common boundary point. Again any corner of the squares, unless

it lie on the polygonal line at some stage, will have four distinct

correspondents : for instance the point where the 5th, 6th, 7th and

8th squares in Fig. 18 meet, will have four distinct correspondents,
one in each of those squares.

100. This construction of Peano's was given in answer to a

query of Jordan's as to whether it was possible for a curve to fill up

completely a space. The answer is that a curve, or a "
continuous

line," as Jordan tentatively defined it, may do so, and hence the

expression "space-filling curve" has crept into mathematical

literature. Jordan assumed that any plane set which can be

brought into continuous correspondence with the points of a

closed segment of a straight linl ought to be called a continuous

line, and the term Jordan curve has, since Jordan wrote, been often

used* for such a set of points. Peano's correspondence, however,

shews that such a set of points may, without further restriction,

constitute a region, and there are obvious objections to allowing
the word curve to be applied to a region. It does not seem de-

sirable that the word curve should be applied to any set of points

which is not dense nowhere in the plane, or in the space in which

it lies. The term "space-filling curve" seems to be one which

should be dismissed, but it is necessary here to mention and

explain it.

The polygonal lines constructed at each stage in Peano's

construction, are curves, which become more and more crinkly at

each stage, and will eventually, as far as the eye can distinguish,

fill up the whole square. At no stage, however, will they actually

exhaust the points of the square. The outer limiting set of these

curves (that is the set consisting of all the points which at any

stage belong to one of these polygonal lines) will be an open set,

dense everywhere in the square. This set, together with all its

limiting points, has been called the limit of the polygonal lines
;
it

* Some writers however only use Jordan curve for a set in continuous (1, 1)-

correspondence with a closed segment, i.e. a Jordan curve without double points,

e.g. Osgood, Trans. Am. Math. Soc. iv. (1903) p. 107 footnote. See below.
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must however not be supposed that, using the word in this sense,

the form of the "
limit

"
of a series of sets of points is in essentials

reproduced by the form of the sets of points themselves.

The points' of this limit can in our case however be described

in order continuously, and we can imagine a point passing from

point to point, while the length a; on the straight line represents

the time taken in passing. This idea, which seemed to Jordan

the essential characteristic of a curve, has occasioned the use of

the term "
space-filling curve

"
for this limit regarded as arranged

in this order.

It hardly seems that with our present advanced knowledge of

the theory of seta of points this concept of Jordan's, which was at

the time a great advance on the current concept of a curve, can

be retained. Jordan's definition of a continuous line marks a

stage in the development of the theory of curves, and leads to

important consequences in the case when the correspondence is

(1, 1), but the concept of a curve, as such, regarded as u set of

points, must surely be recognised as a conglomeration of ideas of

which that of order is only one, $nd is, from many points of view,

a subservient one. A curve, like any other plane set of points,

has a form, and it is in many respects this form which is its most

interesting characteristic ; this form is a property independent of

order, and whereas it is a unique property, the order is one which

is at least determinate in two ways.
In the present volume therefore the expression Jordan curve

will never be used except with the implicit limitation
" without

double points," in which cage the points of the curve do not fill

up a region, the correspondence being (1, 1)*.

101. The mode of construction given by Peano has been

modified in various ways since. In Peano's construction the points
of one polygonal line in which it intersects the next correspond to

certain fixed points on the straight line; in other words certain

points of the
"
limit

"
are constructed at each stage and the poly-

gonal line drawn through them. It is however only essential that

the polygonal lines should at each stage represent the order of the

squares, and they may be drawn as we please, provided they pass
in order through the squares, it is not necessary that they should

have any fixed or base points at all. Again, the order of the

squares can be chosen in a variety of ways. Hilbertt gave a

*
See p. 216.

t Hilfaerl, Math. Ann. xxxvm. p. 459.
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correspondence in which there were no base points, the principle
of which was afterwards used by Moore* from whose work Fig. 19

is reproduced. Moore's polygons have the interesting property
that at every stage they enclose a simply connected region.

Fig. 19.

Moore's polygons, unlike Peano's, have no nodes; in spite of

this however the so-called limit, or space-filling curve, derived

from them, must be considered to have multiple points, since,

however we bring the points of the square into continuous single-

valued correspondence with the points of a segment, the corre-

spondence cannot be (1, 1), and when we describe the points of

the square in order we must from time to time return to the same

point, which will for this reason be called a multiple point. We
saw that this was the case with Peano's construction, and the fact

that the approximating polygons have fixed nodes as base points

rendered this fact clearer. In Moore's case, where there are no

nodes and no fixed, or base points, this fact is only concealed,

hence Osgood (who accords the term Jordan curve only to a plane
set in (1, 1 ^correspondence with a closed segment) denies the

right to term the locus of the point moving in the plane according

to the law of Hilbert or Moore a Jordan curve at all (the ground

given above for refusing to use the term curve in this connection

was a different one).

102. Continuous (1, 1 ^correspondence between the

points of the whole plane f and those of the interior of a

circle of radius unity.

Let every point inside or on a concentric circle of radius ^ be

*
Moore, Trant. of the Am. Math. Soc. i. 1, p. 77.

t Regarded as unbounded, or disregarding the boundary, or with suitable con-

vention as to the boundary.
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transformed into itself, and any other point (r, 6} into a point

(r', ff\ where

~4r-6'
& being an arbitrary constant less than 2. This transforms the

whole plane in the manner required.

The fundamental region may therefore, as in the case of the

straight line, be considered to be either the whole plane, or the

interior of a circle, or of any closed curve whose interior can be

suitably transformed into that of a circle. In general it will be

assumed that the fundamental region is finite, and does not include

the points of its boundary ;
the general discussion of the funda-

mental region must be deferred until 123.

103. A set of points in a plane is a collection of points of

the plane, defined by such a law that (1) any point of the plane

either belongs to the set or not, but not both, nor neither, (2)

assuming we know sufficient of the characteristics of our points,

the law enables us to determine whether or no a given point

belongs to the set, (3) having found any number or collection of

points of the set, it is always possible to find more, if there are

any more.

It is clear that the definition is precisely equivalent to the

following :

A set of points in the plane is a collection of points (#,, #a),

such that the coordinates j form a set of numbers, and so do the

coordinates #,.

The section of a set of points by a straight line is then a linear

set ofpoints, and so is the projection of a set on to a straight line,

in which case, in general, one point of the projection will correspond
to more than one point of the original set.

104. Most of the terminology already used is of general

application in the plane or n-dimensional space, and requires
no separate discussion. The proofs of theorems require usually

trifling verbal alterations, as circle or sphere or n-dimensional

sphere for interval. A point L is said to be a limiting point of a

set, if inside every circle with L as centre there is a point of the

set other than L, if L is a point of the set. The terms isolated

points of a set, and isolated set then have the same meanings as on

p. 18. A sequence is a set with one and only one limiting point,
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a finite set having clearly no limiting point. A set which consists

entirely of limiting points is said to be dense in itnelf.
A set

which contains all its limiting points is said to be closed, other-

wise open. It is then easily proved that both tli# projection
and tfte section of a closed set are closed sets. A set which

is both closed and dense in itself is called perfect. A set is

said to be dense everywhere in the fundamental region, if every
circle lying in the fundamental region contains points of the fet

in its interior; a set is said to be dense nowhere, if every such

circle contains another circle entirely free of points of the set. It

will bo found that these definitions are perfectly consistent with

the extended idea of a region which we shall subsequently develope,
and that the circles may be replaced by regions of no such special

form.

The rational points of the plane are those points both of Whose

coordinates are rational. They form an open set which is dense

in itself, dense everywhere in the plane, and, by Theorem 8, p. 35,

has the potency a.

A perfect set may clearly be dense nowhere, and it is easy to

construct such perfect sets, for instance as follows.

Ex. 1. Let the fundamental region be a circle of radius unity. Take
a circle, and divide its circumference into three equal parts. Divide each of

these parts, as in Cantor's example p. 20, into three equal parts, and blacken

the middle part, and then divide each of the two segments in each of the three

parts similarly and so on. The set of points on the circle which are not

internal to the blackened arcs, constitutes a plane set of points which is

perfect and dense nowhere (Fig. 20).

This could, of course, have been got by transformation from the straight

line. The following is a more typical plane set.

Fig. 20. Fig. 21.
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Ex. 2. Let the fundamental region be a circle of radius uuity. Draw a

circle of radius 'I and another of radius '2, using the ternary notation.

Blacken area of the circumference and the part of the ring between them

as in the preceding example, leaving on the circumference -of every concentric

circle between them a perfect set dense nowhere. Then draw circles of radii

01 and -02, and blacken the parts between arcs of their circumferences as

before, and similarly with circles of radii -11 and -12, and so on, using the

principle of Cantor's example not only for the radii of the circles but also for

the construction of the points of the set lying on the circles. The set consist-

ing of all the points except the blackened parts is a plane perfect set, dense

nowhere (Fig. 21).

Ex. 3. Instead of subdividing the circumferences of the circles, con-

structed as in the preceding example,

we might blacken only the rings between

the circles (Fig. 22), the plane set would

still be perfect and dense nowhere in the

plane, .although on each circle the set

would be from the linear or rather cir-

cular point of view dense everywhere.

Or, we might take on the circles any

perfect sets we please.

It is clear that we may construct

in similar ways sets of points which

are dense nowhere in the plane, and

which may or may not contain com-

ponents which are dense every- Fig. 22.

where on straight lines or other

known curves. The next example is of a plane set which is not

only dense nowhere in the plane, but also on every straight line or

curve
;

it is of historic interest as connected with one of the first

attempts to deal practically with some of the less obvious problems
of plane sets of points nowhere dense*

Ex. 4. Take a unit square, and let lt .,... be any set of positive

quantities each less than 1. Cut off from each corner of the unit square
a square of side ie1; and blacken the cross left in the centre (Fig. 23). From
each corner of each of the four white squares cut off a square of side ^e^,
and so on, ad inf.niiam. The set of points inside and on the perimeter of the

square, but not internal to any of the blackened crosses, is a plane perfect set,

as is easily shewn, dense nowhere in the plane, and whose section on any
straight line is also dense nowhere.

Fig. 23 shews the second stage of the construction when each of the 's is

equal to f. The set so obtained is easily seen to be the same as if we had taken

* Veltmann (Zeitschrift fiir Math, xxvu.) constructed the countable set consist-

ing of all the corners of the crosses iu Ex. 4, as a countable plane set which could

not be enclosed in a finite number of regions of content as siaall as we please.
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on the axis of a? Cantor's perfect set of content zero and on each of the ordinates

through points of this set had constructed a similar linear perfect set.

Fig. 23.

In the chapter on Content, we shall see that the content of this perfect
set is the difference between the area of the square and that of the blackened

region, the latter being calculated as the sum of the areas of all the crosses

composing it. It is therefore convenient for reference to calculate here the

area of the black region. Denoting this by Id) we have, since the area of the

first black cross is 1 Ci
2
,

In Fig. 23, therefore, the content of the black region is unity, that is, it is

the same as that of the unit square, but if we choose the quantities Cj, j, ...

suitably, it is clear that we can make the area of the black region as small as

we please.

Ex. 5. In like manner if we take any linear plane perfect set dense

nowhere on the axis of z, and place on each of its ordinates a similar set, we

get a perfect plane set dense nowhere in the plane, whose section, by any

straight line, is also dense nowhere on that straight line. For instance, if we
take the typical ternary perfect set of positive content we get such a set, the

construction of which, by means of successive crosses, is given in Fig. 24.

The area Id of the black region in this example is less than that of the unit

square, since it is clearly given by the following expression :
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Therefore

and

Fig, 24.

The quantity in brackets is the content of the typical ternary set of

positive content on the straight line

(Ex. 1, p. 78), that is the square of the

linear content of the section of the

plane perfect set by the axis of x or

of y ; as already remarked, this is the

content of the plane perfect set, so

that we see that here the content of

the plane set has the same relation to

its section as the area of the square
to its side, the latter being of course

a special c^se of the former. This

question will be completely discussed

in the chapter on Content.

Ex. 6. Take a circle divided into

four quadrants, and in each inscribe

a circle. Blacken the parts of the first Fig. 25.
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circle external to these four circles. In each of the four small circles perform
a similar construction, and so on. The final set is perfect and dense nowhere
in the plane, and on every curve.

105. THEOREM 1. If G be a set ofpoints in the plane and
have a limiting point L, we can find a sequence ofpoints of Q having
L as sole limiting point.

For let P! be any point of the set. Describe a circle Gl with L
as centre passing through Pa . Describe a concentric circle <7,', of

half the radius of Q. Then since L is a limiting point of the set

0, there are certainly points of inside the circle C/, and these

form a set of points, so that we an assign* one of them Pa .

Describe a circle C9 , with L as centre, passing through Ps , and a

concentric circle Ca

'

of half the radius of Ga . As before we can

assign a point P, of inside Ca'. Proceeding thus we get a

countably infinite set of points of G,

P P P P
i> * s> -*

>
f n>

whose distances from L decrease without limit as n is indefinitely

increased. If Q be any point not one of the P's, nor L, there will

be a definite value ki of k, such that Q lies outside the circle C
kl ,

but not outside any circle Gk for values of k less than A^.

Now there are only a finite number of the points P outside

the circle C^ , and we can determine r so that a circle with centre

Q and radius r lies entirely outside the circle C*,, and contains

therefore only a finite number of the points P: thus Q cannot be

a limiting point of the points P. Therefore the points P form a

sequence having L as sole and only limiting point.

106. Since the distance between two points is a positive

quantity, it follows that, if Gl and G* are two sets, the distances

of the points of Gl from those of Ga have a lower limit ( 16),

which is positive or zero
;
this lower limit is called the minimum

distance of Gj from G^.

THEOREM 2. If GI and G* are closed sets, the minimum
distance e between Gl and' (ra is zero if,

and only if, Gl and Gt

have a common component. If e is not zero there is at least one

pair of points P, from Gj. and Pa from Gt such that the distance

P,P2 is e.

Let e,, e,j ... be a sequence of continually decreasing positive

quantities having e as limit. Let Gi t i
be the component of <?,

* See Appendix.
t Jordan, Court d'Anal. i. 29.
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consisting of all those points of Oi whose minimum distances of

O
lt i from (?, are <e<; then, since e is the lower limit of the

distances of points of GI and (?,, Olt { certainly contains points

for all values of . Als<3, if Q be any point not belonging to
(?,,<,

and k be any positive quantity less than the difference between

i and the minimum distance of Q from a , there can be no point
of G

lti
within a distance k of Q. Therefore Q cannot be a limiting

point of
(?,,*, whence, G

l being closed, it follows that G
lt i

is a

closed set Further {?
lt< contains #I,<-D for all values of t.

Let us project on to a straight line, then the projections of

G
lt i, &,,,, ... are closed sets (104) and each is contained in the

preceding set. Therefore, by Cantor's Theorem of Deduction

(p. 26), these sets have in common a closed set of points. If L be

any one of these points, the projecting line through L contains

points of each of the sets G
lti , and these sections are closed sets

( 104), each lying in the preceding one, and have, therefore, again
a deduced set. If P be any point of this deduced set, it is a point
of O

lt i
for all values of i, therefore its minimum distance from 6r8

is ^ e but <#i for all values of i, and is therefore e.

If e is zero, it follows that P is a limiting point of (?2 ,
and

therefore, Qt being closed, a common point of Gl and Qa .

If e is not zero we can in like manner, since the point P is

itself a closed set, determine from it a point P' of G9 , whose

distance from P (minimum distance) is
,
which proves the

theorem.



CHAPTER IX.

REGIONS AND SETS OF REGIONS*.

107. Before proceeding to discuss further extensions of theorems

proved true for the straight line such as Cantor's Theorem, p. 38,

or the Heine-Borel Theorem, it is desirable to explain fully what
is meant by a region of the plane or higher space.

In the straight line we have only one possible linear element,
the small interval or segment. If we lay such elements on one

another, side by side, or overlapping, or move such an element

about, it generates only one form of region, the larger interval or

segment. The common part of two such segments that overlap ia

a segment, the parts left over in each are again segments. This

makes the whole theory of regions on the straight line a com-

paratively easy^one.
In the plane, and still more in higher space, this ceases at once

to be the case
;
there is no single type of plane element which

takes precisely the place of the linear segment, to the exclusiou

of all others, in fact the idea of form is one which first occurs in

connection with space of more than one dimension, and is of

fundamental importance in the classification and recognition of

plane sets of points. In the plane the linear element itself exists,

but it may be either straight or curved, and if we lay such linear

elements end to end, or overlapping, or move such an element

about, we generate stretches (that is segments of straight lines),

or polygons, or curves of various forms, entities which at once

have the peculiarities of form already referred to, and do not

reproduce on a larger scale the form of the element with which

we started. On the other hand, if we start with a small piece of

the plane, this may have a great variety of forms, it may be a

triangle or a circle, or a figure of more complicated character,

and as we move it about, or lay such elements like tiles one

overlapping with another, we generate parts of the plane of the

Quart. J. of Math, No. 145 (1905).

Y. 12
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roost various and peculiar forms, having apparently
no special

reference to the form of the element with which we started ; any

such part of the plane will naturally be called a region, and it

appears as the natural generalisation in two dimensions of the

segment in one dimension. It has not, however, the definiteneas

of the segment, since it permits great varieties of form ;
in con-

sequence it will be found that it does not possess properties

analogous to all those proved for the linear segment. To arrive

at these properties, it i& necessary to start, for definiteness, with

some special form of region, and we shall start with the triangle*,

whose properties, considered as an area, may be supposed known

from elementary Geometry, and may be shortly summed up in

the following facts:

(1) A point inside a triangle or internal to a triangular

region, is defined to be such that it lies on the same side of any one

of the three straight lines forming the triangle as the intersection of

the other two. The set of all the points inside a triangle is called

a triangular domain, or the interior of the triangle, and is a simple

case of a region. The periphery of the triangle is said to form

the boundary of this region. Any point of the plane which is

neither internal to the triangle nor on the boundary is said to be

an ordinary external point of the triangle.

(2) The region defined in (1) is said to have no edge ;
we may

nowever consider this region together with some or all of its

boundary points ;
this also is said to constitute a triangular region,

which has the same internal points and the same boundary as

before; the points of the boundary which are considered as belonging
to the triangular region are called its edge-points, and constitute

its edge. If the edge consists of the whole periphery o'f the

triangle, the region is called a closed triangular region, its points
then constitute a closed set of points, as is easily proved; otherwise

the region is said to be an open triangular region. An open
triangular region may have no edge, it is then said to be a com-

pletely open region, or a domain
;
but it may have an edge, and the

edge is not then necessarily an open set of points, e.g. the edge

might consist of a finite number of points on the periphery.
The boundary points of an open triangular region which are not

edge-points are considered as external to the region, and are called

external boundary points, they are clearly limiting points of the

points of the region. The external points of an open triangular

*
Hilhert, Grvndl. d. Geom. f 4.
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region consist therefore of ordinary external points and external

boundary points,

(8) Any internal point of a triangular region can be joined*
to any other internal point by a stretch (linear segment), whose

points are all internal to the region. Any ordinary external point

of the triangle can on the other bund be joined to any other by a

simple polygonal pathf, whose points are all ordinary external

points of the triangle. Finally if any internal point be joined to

an ordinary external point by means of a simple polygonal path,

there will be some of the points of the path which are internal

and some which are ordinary external points of the triangle, and at

least one which is a boundary-point- of the triangular region.

108. A set of intervals on a straight line is in a certain sense

a case of a two-dimensional set, since an interval requires two

numbers to characterise it, for instance its two end-points, or its

middle-point and its length ; regarded however as a set of points on

the straight line, a set of intervals possesses the simple property
that the intervals over which the points are distributed may always
be considered as countable (p. 38) ;

a similar property belongs to a

set of triangles, although a triangle, as such, requires six coordinates

to determine it, for instance, the coordinates of its three vertices, so

that a- set of triangles, as such, is a special case -of a six-dimensional

set
; regarded however as a plane set of points, the triangles over

which the points are distributed may always be considered to be

countable, as is formally proved below. The triangles which will

most frequently be used for this purpose, and which will be termed

primitive triangles^., are those whose vertices are the rational points.

Should there be any reason for doing so, we may take, instead of the

rational points, the points of any countable set dense everywhere
la the plane. In space of three, or n, dimensions, we may define

and use in like manner primitive tetrahedra, or primitive n + l-hedra.

Denoting the vertices of any primitive triangle by Pt , Pf , Pk ,

(i<j < k) it follows by Theorem 3, Cor., p. 36 that the primitive

triangles are countable.

*
Hilbert, Joe. cit. 2.

t That is a finite number of stretches (linear segments) AB, BC, ..., KL,

placed end to end, such that the vertices ^, B, ..., Kt L are all distinct and no
internal point of one of the stretches lies on another of them. If all these

conditions are fulfilled except that A and L are identical, the figure is called

a simple polygon (triangle, quadrangle, pentagon, ...). Hilbert, loc. cit. 4.

J "A Note on Sets of Overlapping Intervals," Rend. d. Circ. Mat. di Palermo,

Nov. 1905. See also footnote, p. 40.

122
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THEOREM 1. Given any set of triangles, overlapping in any

way, a set of primitive triangles can be assigned, having the

same internal points as the given set.

Let P be any internal point of one of the triangles ABC.

Join AP, BP, CP, and produce them to

meet BG, CA, AB in L, M, N. Let the

rational points, arranged in countable

order, be Rj ,
Ra , ...; since they are dense

everywhere there will be some of them

inside any triangle ;
let R{, Rj, R* be the

first lying inside the triangles APM, /^^^ \M
BPN, GPL respectively (Fig. 26). Then

it is easily shewn by elementary geometry
that the point P lies inside the triangle

RiRjRx which, on the other hand, itself

lies inside the triangle ABC. It follows that the set of primitive

triangles, each of which has its three vertices internal to some one

of the given triangles, contains as internal points every point whk.h

is internal to at least one of the triangles, and contains no other

internal, points, which proves the theorem.

COR. Given any set of triangles, overlapping in any way, a

coimtably infinite set of the triangles can be chosen, having the same

internal points as the given set.

109. Given a set of triangles, whose equivalent primitive

triangles are d\, d,, ..., it may be that we can find a proper com-

ponent of this set, d^,
d

if
, ..., such that no triangle of this

component overlaps with any but triangles of this component.
If so the given set is said to be intransitive, otherwise transitive.

A set of triangles is said to tile over the part of the plane

consisting of all the internal points of the triangles.

DBF. A part of the plane which can be tiled over by a

transitive set of triangles is called a domain, or a completely open

region of the plane.

It is shewn below (Theorem 2) that the points of a domain

always form an open set. The most generalform of region consists

of a domain together with some or all of its non-included limiting

points. If all the limiting points are included, the region is said

to be closed, otherwise open.
It follows now from Theorem 1 that we may, whenever con-

venient, assume that the triangles generating a region are count-

able, and, indeed, that they are primitive triangles. Every point
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of a region is a limiting point of points of that region, thus a

region is a special case of a plane set of points dense in itself.

From the definition it follows that a closed region is a closed set of

points, hence a closed regional* a special case of a plane perfect set.

110. A region divides the points of the plane into three

classes:

(1) Internal points of the region, i.e. points internal to at least

one generating triangle.

(2) Boundary points of the region, i.e. points other than

internal points, yet limiting points of the internal points of the

region.

(3) External points of the region which are neither internal

nor boundary points.

The set of all the boundary points is called the boundary of

the region. The boundary points which are defined as belonging
to the region are called edge points of the region and the whole

set of them is called the edge ; these may be absent, in which casa

the region is a domain.

111. It is clear from the known properties of the triangle that

an internal point of a region is such that we can describe a circle

round it as centre containing only internal points of the region
inside it and on its circumference, such a circle is said to lie

entirely in the region. An external point P, in like manner, is

such that corresponding to each generating triangle we can

describe a circle with P as centre containing inside it and on its

circumference only points which are external to that triangle.

Corresponding to each triangle there will be a number of these

concentric circular regions, which, taken all together, form a

circular domain. Let us take this circular domain corresponding
to each triangle; if the radii of -these circular domains decrease

without limit, it is clear that the centre P and no other point is

internal to all the circles
;
P is then said to be an external bound-

ary point of the region. Otherwise the point is said to be an

ordinary external point, in tbis case it is easily seen that the

common points of the circular domains consist of all the points

inside a concentric circle, with possibly some or all of the pointb of

the circumference also*. Thus an ordinary external point is such

* Tliiy may for instance be proved by taking a straight line through the centra

and determining the interval which, with or without its end points, is common to

the sections of the circles by the line; rotating this common interval about the

centre it generates the circle in question.
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that we can describB a circle with the point as centre, every

point inside or on the circumference of this circle being an ordinary

external point of the region, such a circle is said to lie entirely

outside the region.

112. In defining a region the edge points must be in some way

specified. It is sometimes, but not always, possible to define the

region completely by means of generating triangles, even when it

is closed, the edge points being defined as those points of the

boundaries of the defining triangles which do not become internal

points of the region. The region is then said to be described by
the defining triangles. If however, for instance, the boundary
be a curve with a cusp pointing outwards, whether ordinary or

rhamphoid, the cusp is external to the defining triangles, in what-

ever mode the region be described.

A region may often be described in different ways, but the

triangles used must be so constructed that in each case they
have the same internal and external points, they will then have the

same edge points ;
if this is not true the two sets of triangles will

not be considered to describe the same region.

Two regions which have the same internal points are not

necessarily identical, for instance the whole of the inside of a

circle is one region ;
it has no edge points ;

the points of the

circumference of the circle, as well as every point outside the

circle, are external to this region. Another region is the whole

of the inside of the circle with the circumference, the internal

points are the same as before, the edge points are the points of

the circumference, the remaining points are the external points.

These two regions are distinct. The former may be described

as follows: Take three radii of the circle, separated by angles
of 120, divide each of these radii similarly, by continued bisection,

at the points distant ^, f, |,... of their length from the centre,

and join corresponding points to form equilateral triangles; rotate

each of these triangles round the centre, until it returns to its

original position ;
the triangles describe the region. The second

region can be described by an equilateral triangle inscribed in

the circle, rotated round the centre back to its original position.

By Theorem 1, if we are only concerned with the internal

points of the region, we can choose out a countable set of the

generating triangles which suffice to cover the whole domain of

the region ;
we may in so doing have converted some edge points

into external points.
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Ex. 1. A region being described by means of an equilateral triangle

which revolves round its centre of gravity, the region is a closed circular

area. Since the points on the circumference of the circle can be brought

by projection into (1, 1 ^correspondence with a segment of the straight

line, tby arc of potency c ; hence no countable set of the triangles (which
are such that one and only one goes through such a point) can include every

point of the circumference of the region. When a countable set of the

triangles have been chosen, covering the whole domain, their vertices will

form a countable set of points on the circumference, dense everywhere in the

circle, that is such that every other point of the circle is a limiting point of

this set, and therefore an external boundary point of the region described by
the chosen triangles.

Ei. 2. Take a square ABCD. At every point of a perfect set dense

nowhere in AB, erect a perpendicular
half as high as the square. These

lines, together with the periphery of

the square, form the boundary of a

region or rather of various regions all

having the same internal points. We
can describe such a region so as to

have no edge, or so that it has edge

points ;
but however we describe it,

we cannot avoid external limiting

points. If we dosci-ibe it so as to

leave as few external limiting points
as possible, the edge will consist of

(1) BC, CD, DA, (2) the black in-

tervals of the perfect set on AB,
(3) the whole of the perpendiculars

through the extremities of each black interval, and (4) the tops of the

remaining perpendiculars*.

113. We can now prove the fundamental property of the

internal points of a region.

Two points are said to be joined by a set of triangles, when
that set is transitive, and has both the points as internal points.

THEOREM 2. If P and Q are any two internal points of
a region, P and Q can be joined by a finite number of the generating

triangles.

Let rflf rft , ... be the primitive triangles having as internal

points all the internal points of the region. Let P and Q be

any two internal points: then either both P and Q are internal

points of the same primitive generating triangle or not. In the

27.

*
Osgood, Trans, of the Amer. Math. Soc. (1900) pp. 310 teq.
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latter case we take any one of the triangles rf, in which P lies and

one dj in which Q lies. Let n be any integer which is not less

than either t orj. Construct all the primitive generating triangles

of indices less than or equal to n. P and Q are known to be

internal points of these triangles, since they lie in di and dj.

These n primitive triangles generate one or more non-overlapping

regions. If there is only one region, or if P and Q are internal to

the same region, then P and Q are joined by a finite number of

triangles. If, however, for .every value of n,P and Q lie in different

regions, let Dn denote the transitive set of triangles, whose indices

are less than or equal to n, generating the region containing P but

not Q. Dn does not then contain dj ;
also no triangle of Dn overlaps

with a triangle of index less than or equal to n not belonging to Dn .

The countable set D of the triangles Dnt for every value of n,

would then be a proper component of the original set of primitive

triangles, since it would not contain dj- and no triangle of D
would overlap with a triangle not belonging to D. This is

however impossible, since the original set of primitive triangles

was transitive. It follows that at some stage the two regions

containing P and Q will have merged into one, so that P and Q
can be joined by a finite number of generating triangles. Q.E.D.

COR. Two internal points of a region can be joined by means

of a finite nwmker of stretches (linear segments) forming a poly-

gonal path, every point of the stretches being an internal point of
the region*.

114. It is interesting to remark that, although at a finite

stage the regions containing P and Q in the preceding proof merge
into one, we cannot assign any finite stage at which all the regions
formed by the first n triangles must merge into one. In other

words, if round every point of the boundary we describe a circle

of radius e, it may happen that, no matter how small e is, the part
of the given region external to the circles does not form one single

region. The following is a simple example where this is the case.

Ex. 3. The Chow. Take a unit square, and divide its lowest side at the

points $, i, ^ ,
or in the binary notation, -1, -01, -001, etc. Mark

The property mentioned in the corollary has been used to define a region ; it

is easy to see that it is not satisfactory for that purpose, not only would any
polygon itself fall undi-r the category of a region, BO defined, but the area bounded

by a lemniscate, or by two circles which touch externally, would have to be termed
a single region ; many of the most interesting theorems about regions, -would, in
this way, be burdened with tedious exceptional cases.
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above each of these points the point whose height ia $ of the distance to the

next point, e.g. the points (!, -0001), ('001, -00001). Join these latter points
to the points of the top of the square vertically over the middle points of the

intervals, as in Fig. 28, forming a zigzag line joining the top right-hand
corner of the square to the bottom left-hand corner as limiting point of the

zigzag. The part of the square below this zigzag, shaded in the figure,

constitutes a region, the "Chow's body," with the bottom and right-hand

edges of the square and the zigzag line as edge. Every point of the left-

hand side of the square is an external boundary point, and together these

form the closely adhering
" Chow's tail."

It is easy to see that, if we describe a circle of radius ,
as small as we

please round every point of the boundary of this region, some of the lowest

corners of the zigzag will each give a circle which overlaps with a circle round

one of the points of the base of the square ;
thus a triangular portion of

the region will be isolated from the.part of the region lying on the right and

left of it, so that the region will always be divided into at least two regions.

Pig. 28.

115. It is to be noticed that a boundary point is not necessarily

such that in any circle with that point as centre there are, apart
from the point itself, both internal and external points of the region
in the circle. Take, for instance, a triangle revolving round one of

its corners
;
the region described is a circular area with the centre

C as one of its edge-points. But a small circle with C as centre

contains no points other than internal points, except C itself.

DEF. A boundary point which has the property that in every
circle with the point as centre there are ordinary external points.
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will be called art'm point, and the set of all the rim points will be

called the rim.

THEOREM 3. Any region which has oi'dinary external points
has rim points, and there is at least one rim point on every straight

line joining an internal point to an ordinary external point.

(In particular the above is true for any region contained in a

finite rectangle.)

For a region has at least one generating triangle, and therefore

it always has internal points; let P be an internal point. If Q
is an ordinary external point, we can draw a circle with Q as

centre, containing only ordinary external points; let this circle

cut the straight line PQ, between P and Q, in Q^ blacken the

interval QQ,. Then every point of the black

interval, including its end-points, is an ordinary
external point.

Similarly every ordinary external point between

P and Q is internal to such a black interval. Thus

by Theorem 8, p. 41, all the ordinary external

points in the stretch PQ fill up a set of non-over- Flg> 29<

lapping intervals. Let that one of these intervals of which QQ! is

a part have its other end at L. Then L is not an ordinary ex-

ternal point of the region, since it is not internal to the interval

of which QQ! forms a part. Neither is it an internal point, since

any circle with L as centre contains points of the interval QL, and

these are ordinary external points of the region. Thus L, not

being either an internal or an ordinary external point, must be a

boundary point. Further, since in any circle with L as centre

there are ordinary external points, L is a rim point, which proves
the theorem.

COR, There is a rim point on every polygonal line, consisting of
a finite number of linear segments placed end to end, and leading

from an internal to an ordinary external point of the region.

The proof of this is of precisely the same character as that of

the theorem.

116. THEOREM 4. Any straight line which meets a linear

segment terminated by two internal points of a region cuts from
the region at least one interval.

Given any two points P and Q of a region, they are either

internal to one generating triangle, or each is internal to a different
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triangle. In the latter case, by Theorem 2, the two points can be

joined by a finite series of overlapping triangles. If / be any

straight line which cuts the linear segment PQ, then / divides the

plane into two parts, in one of which P lies and in the other Q ;

hence / certainly cuts one of the series of triangles above referred

to, and therefore cuts from the region at least one segment.

COR. Any simple polygon* which, separates two internal points
P and Qofa region from one. another contains at least one interval

on its perimeter, consisting entirely of internal points of the region.

The proof is of precisely the same nature as that of Theorem 4.

THEOREM 5. A straight line which contains any internal point

of a region is such that the internal points of the region on it form
a set of non-overlapping intervals.

This follows at once from the fact that the section of a triangle
is an interval, since, by Theorem 8, p. 41, a set of overlapping
intervals has one and only one equivalent set of non-overlapping
intervals.

COR. If the region be a closed region the points of the region
on the straight lineform a closed set consisting of a set of intervals

with their limiting points.

117. DEF. If a closed region can be entirely enclosed in a

strip of width e, bounded by two straight lines perpendicular to a

certain direction L, we shall say that the span of the region in the

direction L is less than e, the lower limit SL of these widths is said

to be the span of the region in the direction L.

The upper limits of the span in every direction is called the span

of the region.

By the theory of linear sets a strip can be drawn with sides

perpendicular to L of width equal to the span of the region in the

direction L, containing insirle it. every internal point of the region,
and having on each of its bounding lines at least one boundary

point. Thus if A and B are any two internal points of the region,

and XAB the projection of AB on L, it is clear that xARt though

always less than SL , can, by properly choosing A and B, be made
as near as we please to SL . Thus 8L is the upper limit of SCAB .

This gives us the following alternative form of the definition of

the span : The span is the upper limit of the length of the distance

between any two internal points of the region.

* Se footnote tr p. 179.
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118. The expression perpendicular (parallel) to the strip it

to be understood as a contraction for perpendicular (parallel)

to the straight lines bounding the strip.

TPEOREM 6. If such a strip be drawn, whose width is the span

of a region in the direction perpendicular to the strip, any straight

line parallel to the strip and inside the strip cutsfrom the region at

least one interval.

For let P and Q be two points on the bounding lines of the

strip which are either edge points or external limiting points of

the region. With P and Q as centres describe two circles small

enough not to cut the straight line in question. Then inside

these circles there are internal points of the region ; hence by
Theorem 5 the result follows.

DEF. If the section of a region by every straight line that

meets it is a single interval, the region is called a dine.

The expression disc will be used in the plane or in higher

space ;
if there could be any ambiguity, we might say a disc of

n-dimensions.

A circle (sphere), triangle (n + 1-hedron), square (cube),

rectangle (parallelepiped) are all discs.

119. THEOREM 7. If 12,, H*, . . . be a countably infinite series of
closed regions, each lying entirely within * the preceding, and if the

span ofRn decrease indefinitely as n increases, there is one and only

one point internal to all the regions.

First let the regions be discs.

Let elt e^, ... be the spans of the discs in the direction XX'.

Determine strips of widths elt j, ... perpendicular to XX', such

that every internal point of R is internal to the nth strip.

The sections of these strips by XX' are a series of segments, each

lying inside the preceding, aqd their lengths decreasing indefinitely;

hence, by Theorem 1, p. 17, there is one and only one point internal

to all these segments; by Theorem 6 the perpendicular to XX'
through this point meets every one of the discs in a segment, and
these segments lie again one inside the other and their lengths
decrease indefinitely, since the span of Rn in this direction

decreases indefinitely. These segments determine one and only
one point L internal to them all, and therefore internal to the

*
I.e. the points of each region, including all its boundary points, are internal

points of the preceding region.
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It is clear that no second point M could be internal to

the discs, for otherwise the projections of the straight line LM in

two perpendicular directions could not both be zero, and therefore

the spans could not decrease indefinitely. This proves the theorem

for discs.

Next let the regions not be discs. Draw the strips perpen-
dicular to XX as before, and draw similar strips parallel to XX',
whose widths are the spans in the direction perpendicular to XX'.

Thus we get corresponding to each region a rectangle, the common

part of the two corresponding strips, and these rectangles lie one

inside the other, and their spans decrease indefinitely. Hence, by
what has just been proved, there is one and only one point L
internal to all the rectangles. This point L is such that every
circle with L as centre contains one of the rectangles, and therefore

all subsequent rectangles, since the span decreases indefinitely ;

therefore any circle with L as centre contains internal points of

one of the regions, and of all subsequent regions; thus, the regions

being closed, L is not external to any one of these regions, and

is. therefore internal to all preceding regions, that is to all the

regions ;
which proves the theorem.

COR. 1. If the regions are not dosed, they still determine one

and only one point L, which, if not internal to all the regions, is a

boundary point of every region after a certain stage.

COR. 2. If only the internal points of each region are known

to be internal to the preceding region, the result is the same

as in Cor. 1.

COR. 3. If the span in one direction only diminish without limit,

the points common to all the regions form a stretch (linear segment)

in the perpendicular direction.

For, as before, if XX' be the direction in which the span
decreases without limit, we determine

a single straight line YV perpen-
dicular to XX' which cuts from each

of the rectangles a segment: these _
segments do not now decrease without

limit, and determine therefore.a closed

stretch LL' consisting of all the points

internal to them all (p. 30).

If P be any point of LL', the

parallel to XX' through P meets

each of the regions, by Theorem 6, and therefore contains a point

L

~

p
.

30
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P
l
of the first region, lying in an interval of length e

l containing P.

Similarly there is a point P, of the second region (and therefore of

the first region), lying in an interval of length ^ containing P,

and so on. Since the spans ,, ... in the direction XX' decrease

without limit, this shews that P is a point of the first region since

it is closed, similarly it is a point of the second, and therefore

an internal point of the first region and similarly of every one of

the regions. Thus the whole stretch LL' is internal to all the

regions.

It is clear that no point external of LL' is internal to

all the regions. For if there were such a point it would either

He on YV or not
;

it cannot lie on TV since only the points

of LL' are internal to the sections of all the rectangles, and it

cannot be off YV since otherwise the span in the direction XX'
would not decrease without limit. Thus the Corollary is proved.

If the regions are not closed, or if it is only known that the

internal points of each are internal to the preceding region, the

regions still determine a stretch, every point of which is an

internal or boundary point of the regions.

It will be shewn subsequently that if the span in two directions

do not decrease without limit the points common to the regions
form a region or a curve, or a combination of regions and curves

with limiting points. The following is however a special case

which can be treated without any preliminary theorem.

COR. 4. If ilie regions are circles, and the span does not

decrease indefinitely, the common points consist of all the points'
internal to a certain circle, including, or not including, the circum-

ference.

For, since the span of a circle in every direction is the same
and equal to twice the radius, the limiting interval, constructed as

in the proof of the preceding theorem, will always be of the same

length 2s, less than the diameters of all the circles, with the possible

exception of one, to which it may be equal. Omitting this latter

circle, if it exists, let us diminish the radius of each circle by s,

without altering its centre
;
these new circles will then continue

to lie inside one another and will therefore, by Theorem 7,

have one and only one common internal point ;
if this be C it is

clearly the centre of the omitted circle and internal to all the

remaining circles, and its distance from the nearest point of each

of the given circles is greater than or equal to s, so that the whole

circle with C as centre and s as radius lies in every one of the
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given circles. No point outside this circle could be internal to all

the given circles, as otherwise the limit of the span in at least one

direction would be greater than 2.s. This proves the theorem.

120. THEOREM 8. (WEIERSTRASS'S THEOREM*.) Any plane

set of points, not merely finite in. number, has at least one limiting

point.

It is only necessary to prove this tneorem for the case when

the points all lie in a finite square; the result follows in the

general case by- correspondence.
Divide the square, in which all the points lie, into four equal

squares, by straight lines parallel to the sides of the square, and

number them 1, 2, 3, 4, beginning with the top left-hand corner,

and proceeding clockwise. Then in at least one of the squares
there must be an infinite number of points of the given set. Take

the first of the four squares having this property, and proceed with

it as with the larger square. This process can be continued ad

infinitum, since at every stage one of the smaller squares must

contain an infinite number of the given

points. We thus get a series of squares
the internal points of each contained in

the preceding and the span decreasing each

time by one-half. By Theorem 7, Cor. 2,

these determine one point L, internal to

all of them, or a common boundary point
of them all after a certain stage. L is

clearly such that in any circle with L as g ' 3 '

centre there is one of the defining squares, and therefore there are

points of the set in the circle, therefore L is a limiting point of

the set, which proves the theorem.

This theorem is the basis of the theory of the derived and

deduced sets
;
a theory which it. to all intents and purposes the

same in linear and in higher space; it enables us to prove the

existence of a first derived set for any set which is not a finite set,

and it is easily shewn that the first derived set is closed. Cantor's

Theorem of Deduction follows, the proof being of the same nature

* Ibis name, by which this theorem is known to many mathematicians, is

probably due to Weierstrass's use of the theorem in his memoir Zur Theorie der

eindeutigen analytixchen Functionen, Abh. aus d. Functionentheorie t 1886, p. 3.

The theorem is, however, much older, and seems (at least for countable sets) to

have been known to Cauchy. The method of proof is due to Bolzano, Paradoxieen

des Unendlichen, Leipzig, 1851.



192 REGIONS AND SETS OF REGIONS [CH. IX

as that given for the straight line on p. 26. From these facts the

whole theory can be developed as in the straight line-

181. In what follows it will be seen that a close connection

exists between regions, or sets of regions, and closed sets of

points,

THEOREM 9. If Ri, Hi, ... be closed regions lying each inside

the preceding, and thore be a point L internal to all the regions such

that a circle can be drawn with L as centre containing no other

point common to all the regions, the span of the regions decreases

without limit.

For let e be an) small quantity smaller than the radius of the

circle in question, and describe with L as centre a circle of radius e.

Then inside this circle and on its circumference there is no point

except L common to all the regions. If we draw a concentric circle

of radius e, there is no point common to all the regions in the ring

between these two circles, including their circumferences. Thus,

if inside the ring there is a point P belonging

to one of the regions, we can assign an integer i,

such that P belongs to Ri, but not to 7^-+1 .

Drawing with P as centre any circle lying en-

tirely inside the ring, there will then (whether,

or no, 'P is itself an internal point of R^, be

inside this circle an internal point of Mi not

belonging to J2i+] ,
and therefore a primitive

triangle consisting entirely of such points of jR
t
-. Let the primitive

triangles inside the ring be di, o\, ... and take the first of these

which has. this property; and lat P be its centre of gravity.

Then either there is an upper limit ra to the possible values of

, for points inside the ring, or else, corresponding to each integer
\ we get a pointP. By Weierstrass's Theorem the points Pl ,

Pt , . . .

would then have a limiting point Q, which, since P< is always
internal to the ring, must be a point inside, or on the boundary of,

the ring, and does not therefore belong to all the regions. There-

fore we can determine an integer k, such that Q is not a point of

Rk . But this is impossible, since P is a point of Rk for all values

of greater than k. Thus t'here must be an upper limit m to th

possible values of t. That is, we can assign an integer m, such

that in this ring there is no point of R,n . Since however if L
be joined to any point outside the circle of radius e by means of

a finite number of linear segments, forming a polygon, this polygon
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must cut the circle, and therefore contain a point not internal to

J2m , it follows by Theorem 2, since L is an internal point of JR,n ,

that all the internal points of R,,, are inside the circle of radius e,

BO that the span of the regions decreases below e : since e may be

as small as we please, this proves the theorem.

THEOREM 10 If Rlt R.t ,... be regions lying each inside the

preceding, and having two or mure common points all tying on a

straight line, the span in one and only one direction decreases without

limit.

This is at once evident, since, if XX '

be perpendicular to the

line of common points, the segments on XX' as in Theorem 7,

Cor. 3 have only one point in common, so that the span in the

direction XX' decreases without limit. On the other hand if Pl

and P8 be two of the common points, the projection of PjPj on any

straight line except XX
'

is not a point, and therefore the span in

no direction except XX '

is zero.

THEOREM 11. If Rlt Rit ... be a, countably infinite series of
closed regions, each lying entirely within the preceding, and if the

span in two directions does not decrease indefinitely s. n increases,

there are points common to all the regions, which do not all lie on

any straight line, and they form a perfect set, such that, ifPl and
jP2 be any two points of itie set, any straight line which meets the

linear segment terminated by PI and P2 contains at least one point

of the set.

For simplicity of expression we take the two directions to be

perpendicular to one another
;
this is no restriction, only in the

contrary case we must work with a parallelogram instead of a

rectangle.

As in the proof of Theorem 8, construct rectangles whose sides

are parallel to the given directions, the lengths of those sides being
the spans in those directions, each rectangle containing all the

points of one of the regions inside it and on its sides: then we
know that, since the regions are closed, there will be at least one

point of the region on each side of the corresponding rectangle.

As in the proof of Theorem 7, Cor. 3, these rectangles determine

a strip, every straight line in which cuts from each region at least

one segment, the bounding lines of the strip being parallel to the

first of the given directions. Similarly they determine such a strip

whose sides are parallel to the second of the given directions. Let

ABCD be the rectangle common to these two strips. Then ABCD
Y. 13
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Fig. 83.

is clearly composed of all the points common to all the rectangles;

therefore all the common points of Rlt R^, . . must lie in or on the

sides of ABCD, and it is easily seen,

since there is at least one point of

each region oo each side of the corre-

sponding rectangle, that there is at

least one of the common points on

each of the sides of ABCD: this is a

consequence of Weierstrass's Theorem.

Thus there are at least two common

points.

Let PI and Pa be any two of the

common points. Then, by Theorem 4,

any straight line which cuts the linear segment PjP,, cuts from

the first region A*, at least one segment, and therefore, by
Theorem 5, Cor., a closed set of points. Similarly the straight

line cuts from R^ a closed set of points contained in the former

closed set : and so on for all the regions. By Cantor's Theorem of

Deduction (p. 26) there is at least one point common to all these

sets; this point of course is a common point of RI, R*, ..., thus we

see that any straight line cutting the linear segment I\P* contains

at least one of the common points

Since there are certainly points on each of two opposite sides

of ABOD, there must be at least one point common to all the

regions on every straight line inside ABCD and parallel to one of

its sides, hence there are certainly an infinite number of the

common points, and their potency is 5. The set has therefore

a limiting point ;
if L be any limiting point, L clearly belongs to

each region, and therefore to the set
;
thus the set is closed.

Further- the set is dense in itself, and therefore perfect, by
Theorem 9. Thus each of the properties stated in the enun-

ciation of Theorem 11 has now been proved.

COR. If P, and P2 are any 4wo points of the set of points
common to R1 ,RS ,... >

and S any simple polygon dividing Pl from
Pa , then there is at least one point of the set on the perimeter of S.

This follows from Theorem 4, Cor., by the use of Cantor's

Theorem of Deduction for a plane set

122. A set of points which satisfies the condition that the set

got by closing it has the property mentioned in Theorem 11, Cor.,
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is said to be " connected*" Thus the preceding Theorem and Cor

may be more shortly expressed by saying as follows :

If RI, R2 ,
. . . be a countably infinite series of closed regions, each

lying within the preceding, and if the span in two directwns does

not decrease indefinitely as n increases, there are points common to

all the regions, and theyform a perfect connected set.

It is clear that the set of common points may, as in Theorem 7,

Cor. 4, generate a single region, or it may be that they form a set

of regions, or that some of the points form a set of regions and

other points are not. included in these regions. It may be,

however, that the set is dense nowhere; in this case it will be

shewn that they generate a curved arc. In general the set will

consist of a combination of regions and curved arcs, with limiting

points, forming altogether a set with the properties enumerated.

123. Regions are divided into finite regions and infinite

regions ;
the former are such as have a finite span, the others are

such that the span in at least one direction is infinite,

The fundamental region may be the whole of the plane (space),

or an infinite or finite region of the plane (space). Since, however,

it is always possible to set up a continuous (1, 1 ^correspondence
of the whole plane (space) with a finite circle f, it will in general

be assumed that the fundamental region is finite
;
when however

the discussion is dependent on the feet that the fundamental

region is finite, this will be expresbly stated
;
in general it will be

'

only necessary to give a proof in a finite fundamental region, the

result in the general case following by the correspondence. Usually
the fundamental region will be considered not to be closed, just as

the whole plane is in general considered to be open. We can

however consider the plane as closed if we
^ postulate that there

is one point at oo and we include this in the plane. We may
more generally postulate a closed set of points, e.g. a circle at

jo and include this circle in the closed plane. In like manner

any fundamental set may for special purposes be regarded as

closed.

124. Since the part of the plane covered by two triangular

domains, which overlap without coinciding, as well as the area

*
See 130. t See j 10.

133
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common to two such triangles,- can be tiled over by a finite

number ot such triaugles, it follows that

(1) The part of'tlte plane covered by two domains (sum of two

domains) is a domain or domains.

(2) The common part of two domains is a domain or domains.

(3) The part of a domain left over after removing a domain'

contained in the first
9

(difference of two domains) is a domain or

domains.

The first of the above statements, but not the second and

third, is true if for two domains tve substitute a countably infinite

number.

The first and second statements remain true if for do.nain we

substitute region, the third statement is clearly not always true

for regions, since two regions may only differ in their edge-points.

Thus we can work with the small domain as plane (space)

element in much the same manner as we did in the straight line

with the small interval
;
this is not the case if we cling to some

particular form of region, e.g. the circle (sphere), since neither the

sum nor the common part of two circles is itself a circle.

A slight complication is introduced by the fact that we may
have more than one domain occurring as the sum or common part
or difference of two domains.

125. THEOREM 12. The boundary of a region is a closed set of

points, dense nowhere.

For by Theorem 3, there is at least one boundary point. If

there are only a finite number, this is a closed set; if there are

an infinite number, there is at least one limiting point, by
Weierstrass's Theorem. Let P be a point internal to the region ;

a circle can be drawn with P as centre, lying entirely within a

generating triangle, and therefore containing no point of the

boundary. Similarly if Q be an ordinary external point of the

region, we can draw a circle with Q as centre, lying entirely
outside the region, and therefore containing no point of the

boundary. Neither an internal nor an ordinary external point of
the region can therefore be a limiting point of the boundary, the

* That is a domain whose points form a proper component of the'first domain.
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only points left, which can be limiting points of the boundary, are

the points of the boundary itself, which is therefore a closed

net.

Further, in any region containing a boundary point P, there ia

a triangle consisting only of internal points of the given region,

and containing therefore no point of the boundary, thus the

boundary is dense nowhere.

THEOREM 13. The rim is a perfect set dense nowhere.

Take a region which has ordinary external points. Let L be a

rim point, since we then know by Theorem 3 that at least one

exists. Draw any circle with L as centre. In this

circle there is an external point Q, and, since there

is an internal point, there is a triangle consisting

entirely of internal points of the given region.

Join Q to'any point of this triangle off the line QL,

this line lies entirely within the circle, and it con-

tains at least one rim point L', which is not L itself. Since the

circle was any circle whatever with L as centre, it follows that L
is a limiting point of the rim. Thus every point of the rim is a

limiting point of the rim, that is the rim is dense in itself.

To shew that the rim is a closed set, take any point P which

is a limiting point of the rim
;
then any circle with P as centre

has a point L of the rim within it, and therefore contains a circle

with L as centre; in this smaller circle there are both internal

and ordinary external points of the given region, these lie

therefore in the circle with P as centre. Therefore P is a rim

point, so that the rim is closed, and being dense in itself, is perfect.

Again, since the points of the rim belong to the boundary it

follows from the preceding theorem that the rim is dense nowhere.

126. A set of regions, regarded as a. set of points, is not

necessarily a closed set, even when all the regions are closed.

There may be limiting points of the set of points which bear much
the same relation to a set of regions that the external limiting

points of a set of intervals on the straight line bear to that set of

intervals.

The set consisting of all the internal points of a set of regions

is, by the definition of a region, equivalent to the internal points
of a set of triangles : if there is only one region the equivalent

triangles may be taken as countable (Theorem 1) : if however we
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try to include tho boundary points of the region as points on the

boundary of tho triangles, we have seen that this is not always

possible. When we come to sets of regions the same difficulty

occurs; before investigating the general theorem the following

definitions must be given.

127 The points of the plane are classified with respect to a

set of regions in the following way :

(1) an internal point of the set of regions is a point which is

internal to at least one region of the set
;

(2) an external point of the set of regions is ,1 point which is an

ordinary external point of every region of the set ;

(3) a boundary point of the set of regions is a point which is

neither internal nor external to it.

The external points are subdivided into (2) ordinary external

jioints, and (26) external limiting points.

An ordinary external point of a set of regions is such that it is

the centre of a circle containing only ordinary external points of

every region of the set. An external- limiting point is an ordinary

external point of every region of the set, but such that it is the

centre of no such circle.

The boundary points of a set of regions are further subdivided

into (3a) ordinary boundary points, (36) superboundary points, and

(3c) semi-external points.

An ordinary boundary point of a set of regions is a boundary

point which is the centre of a certain circle such that a finite

number of the regions can be assigned, having the point as

boundary point, and containing every point of every one of the

regions inside the circle. If this is not the case, but a circle

can be found with the point as centre such that an infinite

number of the regions having the point as boundary point can be

found, containing every point of every region inside the circle, the

point is called a superboundary point (cp. Ex. 4, p. 109).

A boundary point which is neither an ordinary nor a super-

boundary point is called a semi-external point.

If there are only a finite number of regions it is clear that the*e

are ua superboundary or semi-external points.
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Ex. 4. Take a square ABCD as in the figure, and divide the side AB and
the diagonal AC by continued bisection so

that the points A and C respectively are the

only limiting points. Now join C to all the

points constructed on AB, so as to form right-

angled triangles with CJ1 as common side, and

join B to all the points constructed on AC, so

as to form triangles with the common side AD.
If we add to these triangles the triangle -A CD,
we get a set of triangles having as internal

points all the internal points of the square,

except the points of the diagonal AC; the ex-

ternal points are all the points external to the Fi^. 35.

square; the ordinary boundary points are

those on the periphery and on the diagonal AC, with the exception of the

point C, which is a superboundary point.

If we omit all the triangles having B as vertex, every point of AC, except
the Buperboundary point C, is a semi-external point.

128. THEOREM 14. Given any set of regions, a countable set

from among them can be chosen having the same internal points as

the given set.

Replace each region by a set of generating triangles ; these,

taken for all the regions, constitute a set of triangles, which, by
Theorem 1, may be replaced by a countable number from among
them, having the same internal points. Corresponding to each

triangle let us take one region of which it was a generating

triangle, we get a countable set of the given regions, having
the same internal points as the given set of regions.

COR. 1. CANTOR'S THEOREM OF NON-OVERLAPPING REGIONS.

Any set of non-overlapping regions is countable*.

COR. 2. Given any set of regions, a (Countable) set of non-

overlapping regions is uniquely determined, having the same

internal points as the given set.

By the above theorem we may take the given regions to be

countable, say d,, cZ,, ....

Picking out in turn the first of the regions which overlaps with

di and then the first which overlaps with these, and so on, we get
a certain determinate region, Dl say, whose internal points are

all internal points of the given set of regions. Similarly starting
with d, we get a determinate region, which will by construction be

.D,, or a new region D% not overlapping with Dlt according as d^

does or does not belong to those forming D,. Proceeding thus,

* See footnote, p. 38.
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after at niost a countably infinite number of regions D have been

formed, there is no region d which does not form a part of a

region D. Any internal point of the d's will then be internal to

the D's and vice versd, so that, as the D's do not overlap we have

done what was required.

THEOREM 15. Given any set of regions, the countable set of
them having the same Internal paints can be so chosen that they

have the same ordinary boundary points and the same super-

boundary points as the given set of regions.

Let P be an ordinary boundary point of the regions. Then

we can describe a circle with P as centre, such that every point of

the given regions inside this circle is internal to, or is a boundary

point of, a certain finite number of the given regions having P as

boundary point. If there is any other boundary point P' inside

this circle, since P' is not internal to any region,

it is a boundary point of one or more of the

regions determined by P, and is an ordinary

boundary point, since these regions contain every

point of the given regions in a sufficiently small

circle round P'. Take all such circles, round all

such points P. By the preceding theorem we can

replace these by a countable number of such circles, having the

same internal points; these will therefore contain as internal

points all the ordinary boundary points of the given, regions,

and the countable set of the regions of which the centres of

these circles are boundary points, as has been shewn, have all

these points as boundary points
1

,
and contain all the points of the

given regions in the neighbourhood of each such point. Adding
this countable set of the regions to the countable set having the

same internal points as the given regions, we have a countable set

of the given regions having not only the same internal points but
also the same ordinary boundary points as the given regions.

By a precisely similar argument we can get a countable set of

the regions having the same superboundary points as the given

regions, and adding these to the regions already determined we
get such a countable set of the given regions as was contemplated
in the enunciation.

Ex. 1 (p. 183) shews that it is not always possible to choose
a countably infinite set of the regions having not only the same
internal, ordinary boundary and superboundary points, but also

the same semi-external points. We had there an equilateral

triangle which revolved round its centre of gravity. The internal
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points of the set of triangles are the internal points of the circum-

scribed circle; the external points of the set are the points external

to the circle
; the boundary points are the points of the ciicum-

ference, and, since each such point P is the vertex of one, am only

one, of the triangles, while in any circle with P as centre there are

an infinite number of points of the circumference, each of which

belongs to no triangle passing through P, it is clear that every

point of the circumference is a semi-external point of the set of

triangles. When, however, we take only a countable number of

the triangles, as already pointed out in Example 1, it is impossible
to include as boundary points more than a countable number of

the points on the circumference
;
thus a set of semi-external points

of potency c will become external limiting points.

THEOREM 16. Any set of regions, not merely finite in number,

determines at least one point L, such that in any region, ivith L as

internal point, there are points of an infinite number of the given

regions.

Assume first that all the regions lie in a finite square. Divide

it into four equal squares and number them 1, 2, 3, 4, beginning
at ohe top left-hand corner and going round clockwise (Fig. 31).

Then not all the four squares can contain only points of a

finite number of the given regions. Take the first of the four

which has not this characteristic and proceed with it as with the

original square. This process can be repeated indefinitely ;
in this

way we get a series of squares, each lying within the preceding,
and their sides decrease indefinitely.

By Theorem 7 there is one point L internal to all of them, this

point has evidently the characteristic in question.

In the general case the theorem now follows by correspondence

assuming the fundamental region to be closed.

N.B. If the regions do not overlap, L is clearly not internal

to any of the regions, nor an ordinary boundary point : it may be

an external limiting point or a semi-external point, or a super-

boundary point. In none of these three cases is it necessary that

in the neighbourhood of L the span of the regions should decrease

indefinitely ;
this constitutes an important difference between one-

dimensional space and plane or higher space ;
methods which wers

fruitful when dealing with the straight line are, ii> consequence,
not applicable in higher space. The following theorem, for

instance, is not a direct consequence of Theorems 14 and 16.
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THEOREM 17. THE EXTENDED HEINE-BOREL THEOREM FOR

THE PLANE OH HlGHEii SPACE. Given any closed set, lying in a

finite square, and, corresponding to each of its points, a region,

having that point as internal point, there are a finite number of
these regions which suffice to cover every point of the given closed

,set.

Suppose the theorem we're not true. Divide the square, in

which the given set lies, into four equal squares 1, 2, 3, 4, as in

the proof of Theorem 16. Then in and on the sides of at least one

of these four squares there must be points of G, and these points

form a closed set. Suppose this to be the case with the square 1,

and take those of the given regions which suffice to cover all the

points of this latter closed set, omitting those of the given regions
which contain no point of the given set in 1. If the theorem

were true for these regions and this latter closed set, and it were

true similarly taking each of the squares 2; 3, and 4, the theorem

would be true for the given set, contrary to hypothesis : therefore

we may assume that in one of the squares, say 1, it is not true, we

then proceed with the points in that square and on its sides, and

the corresponding regions, as with the given set and regions.

This process can be repeated ad infinitum, since by the hypothesis,

it cannot come to an end after a finite number of stages. We
thus get a series of squares, each lying in the preceding, and

having a side of half the length of the preceding, while two of

these sides at most may lie on sides of a preceding square. Each

of these squares contains points of G, and does not lie entirely

in one region, since, by the hypothesis, the points of G in it and

on its sides cannot be covered by any finite number of the regions.

These squares determine one and only one point L, which is either

internal to them all, or, after a certain stage, lies on a side of each.

Since each square contains points of the given set G, and this set

is closed, L must be a point of G, and is therefore internal to one

of the regions. We can therefore draw a circle of radius r, say,
with L as centre, lying entirely in one region ; any square of

side ^r passing through L, or containing L inside it, will then lie

entirely in this circle, and therefore entirely inside one region;
therefore one of the squares which served to determine L will,

contrary to the hypothesis, lie entirely in one region. Thus the

hypothesis was unallowable, and the theorem must be true.

Q.E.D.
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Cou. 1. This tfieorem is true, with proper conventions as to

2>oints at infinity and regions conhiining tltem, for any closed set.

This follows from the above by correspondence.

COR. 2. THE HEINE-BOREL THEOREM FOR THE PLANE OR
HIGHER SPACE. Given a set of regions such that every point of
a closed region is internal to at least one of the regions, there are

a finite number of tie regions having tfie same property.

Conversely it is e.asy to see that if a set has the property

that, in whatever manner regions be described enclosing the points

of G, a finite number of these regions suffice for the purpose, then G
ift a closed set*.

For if P be any point not belonging to G, we can describe a

triangle with each point of G as internal point and with P as

external point. By hypothesis a finite number n of these suffice

to enclose every point of G. Since P is external to each of these

n triangles, it cannot be a
limiting point of points internal to

them, and is therefore not a limiting point of G. Thus no point
not belonging to G is a limiting point of (?, so that G must be closed.

It is clearly sufficient to prove G closed, if the theorem holds

for some particular form of region, i.e. triangles or circles with the

points of G as centres.

129. THEOREM 18. The points of any closed set which are

not internal to a set of regions form a closed set.

For if P be any point of the closed set internal to tne set of

regions, there is a circle with P as centre containing no point of

the set of points in question, so that P is not a limiting point of

that set, which is therefore closed.

TH EOREM 19. Any closed set determines a set of non-overlapping
domains, the "black regions of the closed set," consisting of all the

points not belonging^ to the set.

For, if P be any point not belonging to the closed set, there is

a circle, and therefore a triangle, containing P as internal point,

and having no point of the set in it or on its periphery. Taking
all such triangles for every point not belonging to the set, these

generate one or more non-overlapping domains, of which the

points of the closed set are the boundary points. By Theorem 14,

Cor. 2, these regions are unique.
*

Veblen, bull, of the Ainer. Math. Soc. x. p. 42)6(1904).

t The edge of the fundamental region, if it has one, being excluded. Cp. foot-

note p. 19.
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130. DEF. A set of points such that, describing a region in

any manner round each point and each limiting point of the set

as internal point, these regions always generate a single region, is

said to be a connected set, provided it contains more than one point.

Hence if a set is connected the set got by closing it is connected

and vice versd.

This definition is equivalent to that given by Cantor*, which

runs as follows : A set T is said to be connected, when, assigning

any positive quantity e, there is, corresponding to each pair of

points of the set t and t'
} a finite number of points of the set,

t\> *i> > tn ,
such that each of the distances ttlt t^, ..., tn t', is less

than e.

To prove the identity of the two definitions, let T be any set

and T' the set got by closing T. Then describing regions round

every point of T as internal points, it follows by the generalised
Heine-Borel Theorem that a finite number n of these regions
suffice to cover every point of T'.

Let R be the region generated or one of the regions generated

(Theorem 14, Cor. 2). Then since all the points of T' are internal

to thg. regions generated, there are no points of T' on the boundary
of R. Therefore the points of T' inside R form a closed set, and,

if there are any points of T' outside R, these also form a closed set.

If we can choose e less than the minimum distance between these

closed sets, it is clear that T is not connected in Cantor's sense.

But we always can do this, unless there is no point of T outside R,

that is unless R is the only region generated. Thus if T is con-

nected in Cantor's sense it is so by the definition first given.
On the other hand choosing the n regions described to be

a

circles of radius ^ with the points of T' as centres, it is clear that
o

if T is connected in the former sense it is so in Cantor's sense.

Thus the two senses are identical.

THEOREM 20. If T is a connected set, it cannot be divided into

two closed components without common points. Conversely a set

which cannot be divided into two closed components without common

points is, if closed, a connected serf.

First let T be a connected set, 2\ one of its closed proper

components, and Tt the complementary set of T, with respect to T.

*
Cantor, Math. Ann. zxi. p. 575.

t This property has been used by Jordan and others to define a connected set

in the particular case when it is closed. Jordan, Court cCAnalyse, VoL i. p. 25.
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The minimum distance ( 105) between T, and T is only zero if T,
is unclosed, since 2\ and T., have no common point. But, by
Cantor's definition this minimum distance must be zero, and there-

fore
r

l\ is unclosed, which proves the first part of the theorem.

Next let T be a closed set which is not connected, and let us

describe regions round the points of T in such a manner that they

generate more than one region, and let It be one of the regions

generated. Then, as before in proving the identity of the two

definitions of a connected set, the points of T inside and outside

II are both closed sets, they have no common point and together
make up T, Thus if T is not connected it can be divided into two

such components, which proves the second part of the theorem.

THEOREM 21. A necessary and sufficient condition that T
should be a connected set is that if P and Q be any pair of points

of T, and H any simple polygon separating P from Q, there is at

least one po'int or limiting point of T on the polygon II.

That this is necessary follows at once from the preceding

theorem, since otherwise T (the set got by closing T) would be

divided into two closed components by II.

On the other hand if T is not connected, T' is not connected,

and therefore, by the preceding theorem can be divided into two

closed components Tl and T.,.

If e be less than the minimum distance between
r

l\ and T,,
M

and we describe a finite number of triangles of span r round the
o

points of 2\ (which by the generalised Heine-Borel Theorem is

possible), the boundary of the region or of the regions, generated

by these triangles will be one or more simple polygons (see 132)

containing every point of T, inside it, or them, and every point of

jP2 outside it, or them. Thus on such a polygon there is no point

of T' and therefore none of T, and yet, since there are points

of T' both inside and outside this polygon, there are certainly

points of T both inside and outside the polygon. That is, if T is

not connected the condition is not 'fulfilled. Thus the condition

Is sufficient to insure T being connected.

By Theorem 4, Cor., the points of a regionform a connected set,

and in fact a perfect connected set.

The points of two regions may also form a connected set, for

instance the area bounded by a lemniscate consists of two regions,

but they form together a connected set : the same is true of any



206 REGIONS AND SETS OF REGIONS [CH. IX

number of regions having common boundary points, but not

overlapping.

131. DEF. A plane set of pointy, dense nowhere in tie plane,

such tiiat, yiven any norm e, and describing round each point of the

set a region of span leas than e, these regions generate a single

region Re ,
whose spun does not decrease indefinitely with e, is called

a curved arc, or shortly, a curve.

It follows from Theorem 7, Cor. 3, that a stretch or linear

segment is a particular case of a curved arc
;
the perimeter of a

triangle, or of a square, or circle, and indeed all the curves with

which we are familiar in plane Geometry, ellipses, branches of

a hyperbola, parabolas, and others are curved arcs.

It was already pointed out ( 121) that tlie inmr limiting set of
a series of closed regions, each lying inside the preceding, i-s a perfect

connected set. A special case of this is therefore the following :

THEOREM 22. If Rlt R.2} ... be region* lying each entirely

inside the pn-eceding, and if the span of these regions in two

directions does not decrease indefinitely as n increases, the common

points of these regions form a curved arc other than a, stretch,

provided only they are dense nowhere and, if R^, R?, be closed

regions, the points of the curveform a perfect set.

132. Simple polygonal regions. Let S be any closed con-

nected set, and elt et , . . . a sequence of continually decreasing positive

quantities, having zero as limit. Describe a triangle of span less

than i with each point of S as internal point (e.<j.
as centre

of gravity). By the generalised Hoine-Borel Theorem a finite

number n of'these triangles suffice to cover every point of S
y and,

since S is connected, these generate a single region R{ .

The regions j,, R.,, ... have then every point of S common,
and, since S is a closed set, they have no other common point;
that is to say S is the inner limiting set of this series of regions.

It follows that as a preliminary to the study of connected sets

it is necessary to be quite clear as to the forms of regions generated

by a finite number of triangles. It is not however necessary to

discuss the most general form of such a region ;
we may make the

restriction that no vertex A of one of the triangles lies on a side of

another, and not more than two triangles have a common rim-

point B. For* if the triangles chosen do not obey this restriction,

we can always remove any such inconveniences by suitably
* ye Appendix.
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enlarging the triangles, without making the span of any triangle

equal to or greater than e\, if it was previously less than e-
t \ the

inner limiting set will in this way be unaffected. A regio.n

generated by a finite number of triangles obeying these re-

strictions will be called a- simple polygonal region.

Thus <i closed connected set is the -inner limiting set of a series of

simple polygonal regions.

Let R be a simple polygonal region, and P any rim point of R.

Then, since P is a limiting point of internal points of a finite

number of triangles, P must be a limiting point of points of one

only of the triangles , therefore P is a rim point of one of the

triangles, since P is not internal to any of them. It follows that

(the triangles having none of the inconveniences specified) P lies

on the rim of one only of the triangles, or on the rim of two, and,
in the latter case, P is not a vertex of-either triangle. Since P is

an ordinary external point of all the remaining triangles, it follows

that, in the former case, there are two stretches with P as enu

point, belonging to the riui of the single triangle on which P lies,

every point of each of these stretches being a rim point of. R.

Fig. 37.

The same is true in the second case, since the two sides meeting
at P do not lie in a straight line, and therefore, of the two stretches

with P as end point determined on any one of them, aa containing
no point of any of the remaining triangles, one is internal to the

other of the two triangles through P; thus there are again two

stretches with P as end point forming part of the rim of R.

The two stretches determined by any rim point P are in a

straight line if, and only if, P lies on only one triangle and is iiot
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one of its vertices
;
thus the rim of R is formed of a finite number

of stretches, not more than two of which pass through any point,

no point of intersection being internal to any of the stretches,

while there is no point through which' there passes only one of the

stretches. Thus the rim of R consists of a finite number of simple

polyyifns, without intersections.

If the rim of R consists of only oue simple polygon, R is said

to be simply connected, while, if there ber bounding polygons, R is

called an r-ply connected simple polygonal region.

A single triangle, or a pair of overlapping triangles, forms

a simply connected region. Three triangles may form a doubly
connected region (Fig. 37).

Since the number of generating triangles is finite, and any

point inside, or on the periphery of, a triangle can be joined to

any other by a stretch lying inside the triangle, it follows that any

point on the rim of a simple polygonal region can be joined to any
other point inside, or on the boundary of, the region by a simple

polygoiial path, every point of which, excluding the two end-points, is

internal to the region. Such a path is said to be internal to the

region.

Hence, choosing out any one of the bounding polygons, the

whole domain, and all the remaining polygons either lie inside or

outside it. The polygonal region, if finite, must, by Theorem 2,

Cor., lie inside one of the polygons A
;
hence A, as well as the

whole domain of the region, lies outside each of the other polygons,
A is called the outer rim, and the other polygons the inner rims

of the region.

This being so, we may shew that any path IT, internal

to the region, and joining two rim points P and P1

, divides the

region, provided it is simply connected, into two parts, such that any
two points in one part can be joined by an internal path, while any
internal path joining a point in one part to a point in the other

intersects the dividing path II.

For P and P divide the simple polygon bounding the region
into two simple polygonal paths, either of which with II makes

up a simple polygon. Since the points of II are internal to the

region, and every internal point of a region lies inside a triangle

consisting entirely of such points, there are internal points of the

region both inside and outside either of these polygons. Taking
a pair of such points any simple polygon joining them must

intersect the polygon. If therefore it does not intersect II, it must
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contain a point of the rim other than one of its enel points, which

proves that IT divides the region into at least two parts. On the

other hand any point inside one polygon can be joined to any

point inside the same polygon by a simple polygonal path which

does not intersect the polygon, and therefore, containing no rim-

point of the region, consists entirely of internal points of the

region. Thus II divides the region into precisely two parts, a*

was stated.

133. The outer rim. Take any finite region lying in a

square & If it have any boundary points other than rim points,

these are points in the neighbourhood of which there are no

ordinary external points of the region, and, by regarding these

points as internal points, we obtain a new region having no

boundary points other than rim points. We may assume there-

fore, in examining the rim, that there are no other boundary

points.

Surround each point of the rim by a triangle of span less than

e having its centre of gravity at that point, and, as in the

preceding section, choose a finite number of these, generating one

or more simple polygonal regions.

Then outside the triangles round the points of the rim there

are always ordinary external points of the region. Also, since we

can draw a triangle consisting entirely of internal points of the

region, so that no point of the rim is inside it or on its boundary,
if we choose e sufficiently small, there are outside the triangles
internal points of the given region,

It is then clear that, if n be the finite number of triangles
of span less than e which suffice to cover every point of the rim,

n is greater than 2, for outside the triangles there is an internal

and an ordinary external point of the given region, and these can

be joined by a simple polygonal path, not cutting any two given

triangles ; by Theorem 3, Cor. there would be a point of the rim

on this path, and therefore there must be at least three triangles.

If C be the outer rim ( 132) of one cf the simple polygonal

regions generated by the n triangles, either every point of C is

internal to the given region R, or all the points of C are ordinary
external points of JR. Now there are internal points of the given

region -inside each of the n triangles ; thus, unless all the n triangles
lie inside C, we can take one of these internal pointsP inside G and
one Q outside G. We can then, by Theorem 2, join P to Q by a

T. 14
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simple polygonal path, every point of this path being an internal

point of the region R. This path must have a point common with

G, thus there must be a point of G internal to the region R ;
it

follows that every point of C is internal to the region R. Thus

unless ail the n triangles are inside G, G consists entirely of points

internal to the region R.

The points of the rim isolated from the rest by such a simple

polygon C we shall call an inner rim. There is then certainly

inside G an ordinary external point of the given region, and

surrounding this a triangle consisting only of such points. Thus

the points external to the given region but internal to C form

a set of domains, the points of which are the ordinary external

points of the given region inside G', conversely it is easily seen

that the ordinary external points of this set of domains inside

C are the internal points of the given region inside G. It

follows that any rim point of one of these domains is a rim

point of the given region, while any rim point of the given

region inside G which is not a rim point of one of these

domains, is an external limiting point of the set of domains.

Thus an inner rim consists of the rims of a finite number of nvn-

overlapping domains, or the rims of an infinite number of such

d&niains, together with the external limiting points of these domains,

the internal points of these domains being ordinary external points

of the given region.

If now we "
wipe out" this inner rim, that is, if we take every

point inside C to be an internal point, we get a new or modified

region having every internal point of the given region as internal

point, and, apart from the inner rim wiped out, the same rim. In

a certain sense the given region may be said to be got from the

modified region by cutting out a certain set of regions ;
it must

however be borne in mind that this is only literally true when this

set of regions consists of a finite number only of regions, otherwise

the external limiting points may belong to the inner rim.

If when we had wiped out all the inner rims determined by
the n triangles, there were no rim points left, the modified region
would have no ordinary external points ;

but those external points
of the given region which were external to the square S are still

external points of the modified region; therefore this is im-

possible, and there are rim points left after wiping out all the

inner rims. Those of the n triangles which surround the rim

points left are such that they form a single region, K(e) say, since

its outer rim must, by what has been shewn, contain all the-
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original n triangles. The part of the rim left inside this region

K(e) we shall call liim(e).

If we draw a strip bounded by two parallel lines, enclosing

every point of the region K(e), there are certainly ordinary
external points of the modified region outside this utrip on either

side therefore all the internal points 'of the modified region lie

inside the strip, since all the rim points of the modified region lie

inside the strip. Since all the internal points of the given region
are internal to the modified region, it follows that the whole of the

given region is internal to the strip. Thus the span of K (e) in

any direction is greater than or equal to that of the given region.

On the other hand if we draw such a strip enclosing every point
of the given region, it is clear that, increasing the breadth of the

strip on both sides by e, we enclose all the triangles of span less

than e round the points of the rim, and therefore enclose the whole

region K(e). Thus tJve span.of K() in any direction lies between

n and s -f 2et where s is the span of the given region in the same
direction.

Now let us perform the same process, taking \e instead of e

and taking care that the triangles of span less than \e round the

rim points lie inside those of radius less than e. Any part of the rim

that was wiped out before will then still be wiped out. The part
of the rim left over after all the new inner rims have been wiped
out, being denoted by Rimtye), it follows that Rim(^e) is con-

tained in Rim(e), and it is also a perfect set, nowhere dense,

and the rim of a certain modified region, while the triangles

of span less than ^e round all its points form a single region

K(^e}, lying inside K(e), the span of K(\e) in any direction

lying between * and * + . Thus taking in turn e, \e, \e, ...

we get a countably infinite set of rims, Rim(e)t Rim($e),

Rini({e),... each lying inside the preceding, and a corresponding
series of regions K(e), K(\e), K({e), ... each lying inside the

preceding, the span of these regions in no direction decreasing
without limit Therefore, by Theorem 22, there is a perfect set of

points A internal to all these regions. If L be one of these points,

it lies inside a triangle of span less than e containing points of

Mim(e), and inside a triangle of span less than \e containing

points of Rim(^e), that is points of Rim(e), and so on; thus L is

a point of Rim(e), since this is a closed set. It follows that A
is dense nowhere, since Rim(e) is so, and therefore by Theorem 22

is a curved arc.

14 2
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Now A is the rim of a certain modified region which is said

to be a simply connected region, since it has no boundary points

other than rim points and no inner rims, therefore if any internal

point of the modified region be joined to any of its ordinary

external points by means of a, simple polygonal path, there will

be a point of A on this path between the two chosen points:

in other words, every internal point of the modified region is

separated from every ordinary external point by A. For this

reason the curve A is called the outer rim of the given region,

since it separates every internal point of the given region

from all those ordinary external points which are not enclosed in

inner rims, in particular from the boundary of the fundamental

region, if it is finite, or from the infinitely distant part of the

whole plane.

134. Returning to the simple polygon C consisting entirely of

points internal to the given region R and surrounding an inner

rim of R, let / be one of the domains formed by the ordinary

external points of R inside C. Then I is a simply connected

domain. For if I had an inner rim, or other rim point not

belonging to its outer rim, we could, as before, find a simple

polygon C' consisting entirely of points of /, containing inside it

that inner rim, or rim point ;
C' would then contain inside it an

internal point P of R, since every rim point of / was shewn to be

a rim point of R. But this is impossible, since P can be joined
to any point of C by a simple polygonal path consisting entirely

of internal points of R, whereas there would be of necessity a point
of C' on that path, and no point of C" is internal to R. Thus /
lias no such inner rim or rim point, and is therefore a simply
connected domain.

Summing up the results of 133 and 134, we have the follow-

ing statement :

Every finite region Jztermines a perfect set of points dense

nowhere called the rim, such that every point of the rim has both

internal and ordinary external points of the region in its immediate

neighbourhood.

The rim may consist entirety of one carved arc ; in this case, if
the region has no boundary points other than rim points, the region
is said to be simply connected.

The most general finite region, having no boundary points other

than rim points, is constructed by removing from one simply con-
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nected region any finite or countably infinite set of simply connected

domains. The rim of tie region so constructed consists of the rim

of the first region, called the outer rim of the region, and the rims

of the domains removed, called the inner rims of the region, together

with all the external limiting points of the regions removed.

It is to be remarked that, contrary to the popular idea, the

rim of a simply connected region is not necessarily a closed curve.

Ex. 3 (p. 184) is a case of a simply connected region, whose rim

is not a closed curve. If we omit the whole of the dotted line,

except the origin, making every one of these points an external

point, we get another simply connected region, whose edge satisfies

the condition for a closed curve, but is not a closed set of points.

The rirn consists of this closed curve, with " the tail." If we take

any point of the tail, it can be joined to any other point of the rim

in only one way, if the second point also belong to the tail : if the

second point belong to the edge, there are two curved arcs joining
the two points, but they have more than two points common.

The general form of an infinite region, and the characteristics

of its rim, are at once obtained by correspondence from the same

for a finite region, regarding the plane as cjosed at infinity. The
outer rim may consist of the whole locus at infinity, or it may
consist of a curve, one or more points of which lie at infinity.

The inner rims of an infinite region are of precisely the same
nature as those of a finite region.

THEOREM 23. A simply connected region is the inner limiting
set of a series of simply connected simple polygonal regions.

Describe as in 132 triangles of span <^ round all the points
of the given simply connected region R, so as to form a simple

polygonal region Ri. If this is not simply connected, let P be
a point inside one of its inner rims, and Q a point outside its

outer rim. Then, since P and Q are both ordinary external

points of R, they can be joined by a simple polygonal path ex-

ternal to R. The- points of this path form a closed set, let be
less than the minimum distance between it and the rim of R.
Then Q and therefore every point of the path PQ is outside the

outer rim of Rj. Hence, if the simple polygonal region R{ was
not simply connected, and we make it simply connected by
wiping out all its inner rims, as in 133, we shall introduce no
extraneous points into the inner limiting set. Thus the theorem
follows.

It is to be remarked that we cannot assert pf the general



214 REGIONS AND SETS OF REGIONS [CH. IX

simply connected region that any point P of its rim can be joined

to any internal point Q by a simple polygonal path internal to the

region. Osgood's simply connected region (Ex. 2) and the Chow

(Ex. 3) are both examples demonstrating this point; a point of

the Chow's tail other than the origin, can, for instance, not he

joined to an internal point of the Ohow by a simple polygon
which contains no rim points or ordinary external points of the

region*.

THEOREM 24. Any simple polygonal path II joining two rim

points P and P' of a simply connected region, and passing through

at least one internal point M of that region, divides the region into

at least two parts.

For let Rlt #,,... be a series of simply connected simple

polygonal regions having the given region R as inner limiting set

(Theorem 23). Let us produce the sides of II which end in

P and P1

respectively, and let P< be the point of the rim of Hi
which lies nearest to P. Then P,, P2 ,

. . . form a sequence of points
in order leading up to P as limiting point (Fig. 38). Similarly we
construct a sequence P,', P,', ... with P as limiting point.

Fig. 38.

Let us describe with if as centre of gravity a triangle con-

sisting entirely of internal points of R, and of span so small that it

is divided into two parts by II. Let Q and Q' be any two points
one in each of the parts of this triangle.

Then, denoting the simple polygonal path PP/ by II<, !!<

divides Rt into two parts ( 133) one of which contains Q and the

Schoentiieb has shewn that when a rim point of a simply connected region
can always be joined to an internal point by an internal simple polygonal path,
and to an external point by such an external path, the rim constitutes u Jordan

Curve, Math. Ann. LVIII. p. 230.
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other ty. Let that one which contains Q be denoted by and

the other by $,'. Then if V and S' denote the inner limiting sets

of Si, $ ... and Si, 8*,... respectively, S and <S" together with fl

will make up the whole of It.

Now a simple polygonal path joining Q to Q' (where these are

the points already so designated, or any other pair, one in 6' and

the other in $') and not intersecting II, must cither intersect the

rim of Ri, or pass between P and Pi, or between P' arid /*/, since

Q and Q' are points of Hi separated by II.

Suppose the path intersects PPi, then we can assign an

integer m, such that Pm lies between P and the point of inter-

section. The path would then have to intersect the rim of Rm ,
or

to pass between P and 2}m '. In the latter case however we could

in like manner determine n, so that the path does not pass between

P and Pn', and must therefore intersect the rim of Rn . Thus in

any case, if the path does not intersect II, it contains an ordinary
external point of the given region R, so that any internal

path QQ' must intersect II. Thus R is divided into at least two

parts by II.

It does not follow that R is divided into only two parts, for

since II may itself contain rim points of R, there may be parts
of the rim of R dividing up S, or S', into parts, the internal points
of which cannot be joined by an internal path which does not

intersect II.

135. It is a direct consequence of the investigation of the

preceding section, tha.t a dosed plane set which contains no curves,

is complementary to a single open region, whose rim is the rim of
thefundamental region.

This is so far remarkable, that it shows that the mode of

construction of closed or perfect sets by means of black domains,

(which is tlje extension of that habitual on the straight line, by
means of open black intervals, which, in the former case may.
and in the latter may not, abut), when applied to the plane, leads

only to closed or perfect sets containing curves. Those which
do not contain curves have a special interest in theory of functions

of two variables, as was pointed out by Baire, although those sets

of this kind which occur in Baire's work are not of the most general
character*.

* See footnote, p. 230.
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136. Having gained some insight into the meaning of the

term region, we are now in a position to resume the discussion of

the meaning of the term dimensions which was raised in Ch. VIII.

We saw that the question of the dimensions of a region resolves

itself into that of the possibility or impossibility of a continuous

(1, 1 ^representation of the region on some known form, e.g.
on

the straight line. It is necessary here to insert some preliminary
theorems about such representations.

THEOREM 25. In any continuous representation of a plane set

on a linear set, if a closed setg on ttte straight line represent a plane
set G, is also closed.

For however we describe circles CQ round each point Q of G as

centre, a finite number of the corresponding intervals dQ ( 98)

will suffice to enclose every point of g \
therefore the corresponding

circles, in finite number, will suffice to cover every point of 0, so

that G is closed ( 128).

COR. 1. The points of any sequence on the straight line corre-

spond to the points of a sequence of points of G, and the limiting

point of theformer sequence hasfor correspondent the limiting point

of the second sequence.

Conversely given a sequence of points of G, every limiting point

of the corresponding points on the straight line is a correspondent of
the limiting point of the sequence of points of G.

COR. 2. If no point of G corresponds to every point of ome

segment (in jxirticular if no point of G has c correspondents), then

any point t of the straight line tiaving T as correspondent is a

limiting point of the correspondents of a sequence having T as

limiting point.

THEOREM 26. In any continuous representation of a plane set

an a linear set, if a connected set g on the straight line represent a.

plane set G, G is also connected, provided no point of the plane

corresponds to a connected set tfpoints on the straight line.

[In particular the above holds if no point has an infinite set of

correspondents on the straight line.]

Let g be the set got by closing g, and G' that got by closing tr,

and let us represent G' on g\ by extending the given representa-
tion so that every limiting point of a sequence of points of g
corresponds to the limiting point of the corresponding sequence of

points of G (Theorem 25, Cor. 1).
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Now by the restriction imposed on the representation, G, and

therefore G', contains more than one point. Also it' two closed

sets have together the same points as G', the two corresponding

linear sets being closed (Theorem 25), and having the same points

as the connected set g',
have at least one common point (Theorem

20). Thus, by Theorem 20, G', being closed, is connected, so that

G is also by definition a connected sdt. Q. E. D.

THEOREM 27. A continuous (1, ^-correspondence between a

region of the plane and a segment of the straight line is impossible*

For suppose it to be possible. Let A and B be any two

internal points of the region and a and b the corresponding points.

^u p I

Fig. 39.

Then A can be joined to B by a finite number of stretches

forming a polygonal Hue and lying entirely in the given region :

the points of this polygonal line form a closed set which is

connected. By Theorem 25 the representative set on the atraight
line is closed ; also, since the correspondence is (1, 1), the argument
used to prove Theorem 26 shews that it is also connected, and is

therefore none other than the segment (a, 6). Let P be any point
of this polygonal line and p the corresponding point of (a, b), then

since no point near P and not on the polygonal line can correspond
to a point nearer to p than the nearer of a or 6, we can assign a

sequence with P as limiting point, whose representative points
have not p as limiting point, which by Theorem 25 is contrary to

the hypothesis that the correspondence is (I, 1): therefore the

hypothesis that the correspondence is both (1, 1) and continuous

is untenable. Q. E. D.

*
Jttrgens, Jahrfulericht <L d. Maihvgg. vm. p. 50 (1399) where quotations and

criticism of earlier work will be found. The following 'is not quoted by Jvirgens.-

L. Miles!, Riv. di Mat. n. (1892) pp. 103106.
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137. Uniform Continuity. The interval dp corresponding
to the circle CP of 98 may, if we please, be determined uniquely
as the largest interval (16) with p as centre, such that all the

points of g internal to dp have their correspondents inside CP .

If dp be taken smaller than this largest interval, the end-points
a and b of dp are such that, if they belong to g, their corre-

spondents A and B also lie inside GP ,
the end-points of the largest

interval itself certainly belong to g and have no correspondents
iiiside Gf .

The length of the largest interval, when the radius of Cf is a

fixed quantity e, is finite for all points p, but the lower limit of all

the lengths may be zero. If this is not the case the representation

is said to be uniformly continuous. In other words the representa-

tion is uniformly continuous if, and only if, when e is arbitrarily

assigned, we can determine d, so that, whatever point p be chosen, if

q is within a distance d of p, tfw corresponding point Q is within

a distance e of P.

THEOREM 28. If the set g is closed, the correspondence is always

uniformly continuous.

For, by the generalised Heine-Borel Theorem (p. 41), a finite

number of the intervals dp corresponding to circles of radius \e with

the points of Q as centres, suffice to enclose every point of g. Since

the end-points of a finite number of intervals form a closed set,

and g is a closed set having no point common with the former,

there is a positive minimum distance ( 105) 2d between theso

two closed sets. If P be any point of G, and p the corresponding

point of g, p will be internal to at least one of the given intervals,

and an interval of length 2d with p as centre will contain none of

the end-points, and will therefore lie entirely inside any of tho

intervals containing p. It follows that the points of G corre-

sponding to the points of g in this interval of length Id, will lie

inside any one of the circles of radius \e which correspond to the

interval, or intervals, containing p, and will therefore contain P.

Thus every one of these corresponding points is within a distance

e of P. This proves that the correspondence is uniformly con-

tinuous.



CHAPTER X.

CURVES.

138. A curve has already been defined in Oh. IX. The

definition is repeated here.

DBF. A plane set of points, dense nowhere in the plane, such

that, given any small norm e, and descrilnrxj round each point of
tfie set a small region of span less than e, these small region*

generate a single region Re , whose span does not decrease indefinitely,

is called a curved arc, or shortly a curve.

The following then follow from the investigations on regions :

A curve is never a point and never a region, and, only when the

span of the region Re in one direction diminishes without limit as

e does so, is it a stretch (segment of a straight line).

The points of a curveform a connected set.

A closed connected set dense nowhere in the plane is a curve, and

is said to be a complete curve.

The points of a curve may or may not form a closed set : the

non-included limiting points may be finite, or countably infinite,

or more than countable.

DBF. An arc, every one of whose points is a point of a certain

curve, is called an arc of that curve.

The following property of a curve is an immediate consequence
of the definition :

Given any two points P and Q of a curve, there is at least One

arc of the curve PQ not containing P nor Q, but having both these

points as limiting points.

Such an arc is said to join P to Q.

THEOREM 1. If we add to the points of a curved arc any or

all non-included limiting points, the set so obtained will itself be

a curve.
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Since the set got by closing a set which is nowhere dense is

itself nowhere dense, this closed set, and therefore any component
of it, is nowhere dense.

Describe rouud any non-included limiting point L a region of

span less than e. Then, since L is a limiting point of the points

of the arc, there are certainly points of the arc inside this small

region, which, therefore, certainly overlaps with R<. Thus adding

any such small regions to Re> we still get a single region whose

span is not less than that of Re . Thus the set has the two

characteristic properties of a curve.

139. Branches, end-points and closed curves. Given a

point P of a curve, and describing round it as centre a circle of

radius e, there are certainly points of the curve inside this circle,

and, if Q be any one of these, there is at least one arc PQ, having
P and Q for non-included limiting points (this arc does not

necessarily lie entirely inside the circle, no matter how small e

may be; cp. Ex. 3, Chap. IX, p. 184). It may be that, when

e is chosen sufficiently small, there is a point Q in the circle

such that there is only one arc PQ; if so, PQ is called a branch

of the cui"ve from the point P.

Ex. 1. 'If P be a point of a circular arc, not a complete circle, then from

any other point Q of the arc there is only one arc to /', thus the circular arc

is a branch from P.

It may be however that, however small e may be, there is

always more than one arc PQ; if this be so, but if there is any arc

of the given curve having a branch PQ, then PQ is still called

a branch of the given curve from the point P.

Thus the expression
" branch

"
must be taken to refer to the

form of the curve in the neighbourhood of some particular point,

and not to the form of some finite portion of the curve in its

entirety.

Ex. 2. If P be a point of a complete circle, there are always two arcs PQ,
wherever Q may be on the circle. But if we omit from the circle a small arc

having P aa non-included limiting point, and not containing Q, the remaining

part of the circle is a circular arc, and therefore by Ex. 1, this is a branch

of the circle from P. Similarly the omitted arc is another branch of the

circle from $ to P. Thus there are two branches of the circle from every

point P of the complete circle, these branches having no common point

(except P, if we choose .to include it).

Suppose that PQ is a branch of a curve, Q lying inside a circle

of radius e with P as centre. Let Q' be any other point of the
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curve inside the same circle: then if, by choosing t sufficiently

small, the arc .PQ' is always either part of the arc PQ, or PQ is

a part of PQ', then there is said to be only one branch of the curve

from P, and P is called an end-point of the curve.

It is clear from these definitions that a curve remains a curve

if we omit one or more of its end-points.

Ex. 3. The curve which forms the edge of the region in Ex. 3, Ch. IX,

affords an example in which the cnd-fioi'iito are of potency c. The complete
curve with the tail haw an end-point at every point of the tail. Any set of

points of the tail may be omitted without the set losing the character of

being a curve.

If P is a point of a curve but not an end-point of the curve

there will always be at least two arcs of the curve, neither of which

is a part of the other, both arcs having P as limiting point. P is

said to- be an ordinary* point of the curve, if there are two and

only two such arcs PQ and PQ
7

,
when e is chosen sufficiently small.

If, however small e may be taken, there are more than two

such arcs, P is called a fork-point of the curve, which is said to

fork at P.

Ex. 4. A lemniscate forks at the double point; there are four branches of

the lemni.scatc from the double point.

Ex. 5. Fig. 40 .shews a fork-point which is itself a limiting point of

folk-points. However small a circle be

described round 0, if Q be a point of the

curve inside this circle, there is a more
than countably infinite set of arcs OQ, none

of which is a part of another. Fig. 40.

DBF. A simple closed curve is a curve such that given any
two of its points P and Q the curve can be divided up into two

curved arcs, which together with P and Q make up the whole

curve, and are such that P and Q are limiting points of each arc,

while no point of one arc is a limiting point of points of the other

arc.

A simple closed curve has no end-points.

A closed curve is not necessarily a closed set of points^, nor is

the complete curve got by adding to a closed curve all its non-

* In the theory of algebraic curves the word ordinary point is used in a

somewhat narrower sense : a cusp for instance is in the above general sense an

ordinary point, but not in the sense in which the term ordinary ia used in the

theory of algebraic curves.

1 This is au objection to the use of the term " closed curve," but the expression
is too familiar to be lightly displaced. In Italian the term "eurva rientrantc

"
has
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included limiting points necessarily a closed curve. An example
of this is the edge of the region given in Ex. 3, Ch. IX

;
if we

include the origin, this is a closed curve, but the non-included

limiting points form the "
tail

"
which consists entirely of end-

points.

140. Jordan curves. A plane set of points which can be

brought into continuous (1, 1 ^correspondence with the points of

a closed segment (a, z) of a straight line is called a Jordan curve*.

The end-points a and z of the segment may be exceptions to

the uniqueness of the correspondence in so far that they may
correspond either to different points or to the same point.

Analytically this definition may be expressed as follows.

Let x =/(<), y=$(t\

where / and
<j>

are continuous single-valued functions of the

independent variable t, for all values of t from t to Tlt both

inclusive, which do not assume the same pair of values for any
two different values of t within the given limits: the locus of

the point (x, y) is called a Jordan curve.

The pair of extreme values /()> $(O and f(T^), <(2\) may
be identical.

By Theorem 2o, Ch. IX, the points of a Jordan curve form a

closed set. Consequently, since, by Theorem 27, Ch. IX, they do

not form a region, they form a set which is dense nowhere.

Further, by Theorem 26, Ch. IX, the points of a Jordan curve

form a connected set. Thus it is clear that each point' of a Jordan

curve is a limiting point of the curve, whence the points of a

Jordan curve form a perfect connected set dense nowhere.

It follows that the points of a Jordan curve form a curved arc.

been used instead of "cnrva chiusa"; in Lnglisb, however, reentrant suggests
a' different idea. In German there is no confusion between "

abgeschlossene

Menge'' and "
geschlossene Kurve." Schoenflies uses "einfacbe geschlossene

Knrve "
in a special sense, which he shews to be equivalent to "

simple closed

Jordan curve" (Math. Ann. LVIII. p. 217).
* Jordan's original definition of a "continuous lin,e" (Court d'A. i. p. 90) is

rather more general, since it does not postulate that the correspondence should be

(1, 1). A already pointed out, it would not then follow that the points of the locus

are dense nowhere. The presence of a finite or countably infinite set of multiple

points of the correspondence, only necessitates our considering the locus as

consisting of a finite or countably infinite number of Jordan curves : the presence
of more multiple points however introduces so many complicated possibilities, that

it is best, as is now customary, to reserve the term Jordan curve for one without

multiple point?. Jordan himself does not work with any other curves than thosa.

without multiple points.
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THEOREM 2. A Jordan, curve docs not 'fork; and it has two

end-points if a and z have different correspondent*, but is a closed

curve if a and z have the wine correspondent.

Describe a circle with centre at any point P of the curve, and

let (6, c) be the interval of length d with the corresponding point

p of the segment (a, z) as centre, such that the circle contains

all the points corresponding to (6, c). Then the points corre-

sponding to (b, p) form a curved arc, and so do those corresponding

to (p, c), and these two arcs have no common point except P.

Thus from P there are at least two arcs PB, PG of the curve, so

that P is not an end-point.

Again, if there were any sequence of points Qlt Q3 ,
... of the

Jordan curve inside the circle, no point Qi belonging to one of the

arcs PB, PG, the corresponding points (/,, </2)
... of (a, z) would

not lie inside (6, c) and therefore would not have p as limiting

point. Thus the limiting point of the sequence Qi, Q2 will be

some point other than P, so that P is certainly not a fork-point.

The same reasoning applied to the points a and z shews that

if they have different correspondents they are end-points, or, if

the same correspondent, ordinary points of the Jordan* curve.

THEOREM 3. A circle is a closed Jordan curve.

This is most easily seen by projecting the points of the circle

from any point S of it on to the tangent at the diametrically

opposite point 0. Each point P of the circle then corresponds to

a single point p of the straight line, and vice versa, the point

corresponding to itself and the point S to the point at infinity

on the straight line.

Since the whole straight line can be put into continuous

Correspondence with a segment OZ, the point GO corresponding to

both and Z said the correspondence being otherwise (1, 1), this

gives us a (1, 1 ^correspondence between the circle and a segment
OZ, the point S corresponding to both and Z.

It is easy to see that this correspondence is continuous;

analytically the correspondence between the points (r, #) of the

circle and x of the segment ( 1, 1) may be expressed by the

formulae

r = 2a cos 0} r = 2a cos

x

-Xa, ;
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It is clear that any two Jordan curves are in (1, l)-continuous

correspondence. Hence the last theorem enables us to phrase the

definition of a closed Jordan curve rather more simply.

A closed Jordan curve is a plane set of points which can be

brought into continuous (1, ^-correspondence with the points of a

circle*.

THEOREM 4. Given any positive quantity e, we can determine

a positive quantity d, such that, if with any point p of the segment

(a, z) as centre, we describe an interval dp of length d, we can

describe a simply connected region, bounded by a countable number

of circular arcs, and of span less than e, containing as internal

points every point of the .Jordan curve corresponding to the internal

points of dp> and no other points of the Jordan curve.

For, by 137, starting with \e, v;e can determine d so that,

if p be any point of (a, z) and dp the interval of length d with

p as centre, all the points corresponding to the points of dp , lie

inside a circle, with its centre at the corresponding point P and

radius '\e.

Let b and c be the end-points of dp ,
and describe the small circle

of radius \e round the point P ;
the points B and C, corresponding

to 6 and c, lie certainly inside this circle.

Now the points of (a, ?) not internal to dp correspond to points

of the Jordan curve forming a closed set which includes 6 and c
;

Fig. 41.

hence, if Q be the correspondent of any.point q internal to dp ,
the

distance of Q from the points whose correspondents are not

*
Hunvitz, Zurich Address, Verfmndlungen den crtten internationalen

motiker-Kongrettes in Zurich vom 9. bit 11. August 1897, Leipzig 1898, p. 102.
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internal to dp , has a definite minimum 2rg, which is not greate?

than BQ or GQ, and is theiefore less than \e.

Describing round each point Q as centre a circle of radius TQ,

a countably infinite set of these suffice to cover every point Q, and

these generate a single region, since the points Q geneiate an are

of the Jordan curve. Further this region lies entirely within the

circle with centre P and radius \e, since rq<\e. Now the points

of the closed Jordan curve not internal to the region so con-

structed, form a single arc, and if e is sufficiently small it certainly

lies partially outside the circle with centre P and radius ^e.

Thus if this region is not itself simply connected, there are

certainly no points of the Jordan curve enclosed within its inner

rims and we can, without enclosing any new points of the Jordan

curve, make it simply connected by obliterating all inner rims.

Let us then call it Rp. Then RP is a simply connected region, of

span less than e, and its rim consists of a countable set of circular

arcs; Rp contains as internal points all the points of tho Jordan

curve corresponding to internal points of dp ,
and no other points

of the curve.

COR. The region Rp can be so constructed that it has only
two points B and C of the curve on its rim, and so that, enclosing
B and C in any i envons whatever, the part of the rim of Rp not

internal to these regions, consists of a finite number only of circular

arcs.

The region Rp, as already constructed, has clearly the first of

these properties, since the only points of the Jordan curve internal

to the circle of radius rq are points internal to RP , so that the

only points of the curve on the boundary of Rp are limiting points
of points of the curve internal to Rp, and are therefore B and ('

only, which clearly are boundary points.

The second part of the corollary is a direct consequence of the

fact that the points of the curve in Rp, not internal to the regions
round B and (7, form a closed set, so that only a finite number of

the circle? are needed to cover them.

THEOREM 5. (JORDAN'S THEOREM*.) The plane is divided

into two parts by a closed Jordan curve.

*
Jordan, Court d'Analyte, Vol. i. pp. 91 to 99. The proof in the text is

printed here for the first time. See also Veblen, Tram. Amer. Math. Soc. Vol. T.

p. 365 (1905). Other proofs of this theorem, with restrictions as to the constitution

of the Jordan curve, have been given by Schoenflies, G6tt Nachr. 18%, p. 79,

Bliss, Bull. Amer. Math. Soc. Ser. 2, Vol. x. p. 398 (1904), and Ames, Amer. Jovrn.

Y- 15
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Assuming any small positive quantity e, determine d, and

choose out a finite number of intervals of length d covering up

the whole of (a, *), so that no interval overlaps with more than

two of the others, and no two intervals abut (Fig. 42).. These

intervals may be numbered in order from left to right di,d* t ...dn .

I
*

h -

Fig. 42.

Let bt and d be the left and right hand end-points of dt, and

pt be a point of dt not lying in any of the other segments, and let

B{, <7, and Pt be the corresponding points of the Jordan curve.

Describe round each point P,- a region Ri} having the properties

enunciated in Theorem 4 and the Corollary. Since the interval dt
-

has the segments (6<f Cf_i) and (6i+1 , c<) respectively- common with

dt-i and di+1 , it follows that the region RI has in common with

the regions -Rf-i and jR,-+1 two parts (which are simply connected

regions*) enclosing the arcs 5i(7<_j and Bi+1 Ci. If it overlaps

with a third region, however, this can contain none of the points

of the curve in Rit and may therefore, since the common part is

bounded by a finite number of circular arcs, be reduced till it has

no common point with Rit and no common boundary point, the

newly introduced part <of its boundary consisting still of a finite

number of circular arcs. Similarly if the two regions which

necessarily overlap with .R,-, have other points common with Rit

we can reduce them till they have no such common pointsf.

Thus we may, without loss of generality, assume that the

regions J^, Rt ,
... Rn, each ol span less than e, bounded by a

countable number of circular arcs, and containing every point of

the curve, are such that each /,- overlaps in a single part with

each of the regions R^ and Rt+i, but with none of the others

Fig. 43). These regions form a single region Re .

of Math. Vol. xxvn. (1905). The last of theee, which is an arithmetic proof of great

elegance and simplicity, is reproduced on pp. 130 141 of Osgood's Lehrbuch der

Funktionentheorie (1906), the first half of the first volume of which has been

received during the correction of the proof-sheets of the present chapter ; a sketch

of this proof had already been given in Bull. Amer. Math. Soc. Ser. 2, Vol. x. p. 301

(1904).
* Since a simple polygon internal to aneb a part consists of points internal to

both regions, and does not therefore enclose boundary points of either.

f See Appendix.
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Now sine* the points Bl
CnB^Cl

BtCt , ... BnBt are internal to

Rt , they can be joined by a simple* "polygon II internal to R*

Fig 43.

Also since It; is simply connected, and Bi and Ct are points on its

rim, Hi is divided into at least two parts by II (Theorem 24,

Ch. IX, p. 214). But, since li^ and Ri+l do not intersect, the rim

of Hi is divided by /?i_, and Ri+i into precisely four parts, of which

one is internal to R^ and intersects II at Bit another is internal to

Ri+1 and intersects IT at (7;. The remaining two parts form part
of the boundary of R6 and are divided from one another by the

parts in .#_, and Rt+i, and therefore by II. By Theorem 4, Cor.

these consist of a finite number only of circular arcs : let thai

]>art which lies inside II be and the other m,. Similarly th*

rim of Ri^ is divided into four parts, two of which, each consisting

of a finite number of circular arcs, belong to the boundary of Re ,

and one, and one only, of these, ,-+,, will abut with /,-, while the

other, ?i+1 ,
abuts with m^ In this way we get inside n a finite

number of circular arcs, /lf / ... >,, forming a simple cirenlar

polygon Let and outside II another such polygon Ate from the m & :

these two polygons form the complete boundary of Re . Me IB

therefore the outer rim ( 133) of Re , while Le is an inner rim,

and is the only inner rim of jR4. Thus JB is a doubly connected

region, got by cutting a simply connected region Ie with rim Le

out of a simply connected region with rim Mf .

Denoting the part of the plane outside this latter region by 0,,

Ie is completely divided from Oe by the region Rt , and the whole

plane consists of /, Of and Rt .

Let e describe a sequence et , e.Jt ... having zero as limit; the

points common to R
tl , R^ t

... form the Jordan curve, while if

denote the set of all the points belonging to
Ci , Ofi , ... and / of

* Footnote t. p. 179. Kee aim Appendix.

152
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all the points of /,, /,.,, ..., and / have no common points, and

the whole plane consists of 0, 1 and the Jordan curve.

Given any two points of 0, we can assign a value of n such

that the two points lie in Oen ,
and can therefore be joined by a

path lying entirely in Otn
and containing therefore no point of the

Jordan curve : similarly for two points in /.

On the other hand if P is a point of and Q of /, any polygon

of a finite number of sides joining P to Q must cut the region

Rt ,
for every value of ,

in a closed set of points, and must

therefore, by Cantor's Theorem of Deduction, contain at least one

point of the Jordan curve.

Thus any polygon joining P to Q contains a point of the

Jordan curve, so that the Jordan curve separates all the points of

from the points of /, while, as has been shewn, the points of

may be joined by polygons containing no points of the curve, and

so may the points of /. That is to say the Jordan curve divides

the plane into two parts, and /. Q. E. D.

COR. and I are each simply connected domains with the

Jordan curve as common rim.

For every point of 0, being a point of some 0,n ,
is iniernal to

a triangle consisting entirely of points of 0, so that consists of

one or more domains. Also given any two triangles belonging to

0, we can assign m so that em is less than the minimum distance

between the Jordan curve and the pair of triangles, these latter

will then belong to the transitive set of triangles generating Oen
.

Thus the triangles generating form a transitive set, so that is

a single region.

That the Jordan curve forms the rim of is easily seen, since

any point of J, being a point of some I
6n ,

is an ordinary external

point of O
fn

and therefore of 0, while every point of the Jordan

curve is clearly a limiting point of points both of / and 0. Thus

the Jordan curve being the rim of 0, is by definition ( 133) a

simply connected region. Similarly 7 is a simply connected region
with the Jordan curve as rim.

THEOREM 6. If P be a point of a closed Jordan curve and Q
a point not belonging to the curve, P and Q can be joined by a

simple polygonal line of a finite number of sides, no point of which

lies on the Jordan curve> or by one of a countably infinite number

of sides having only P as limiting point.
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For let p be the point of the segment (a, z) corresponding
to P, and describe a small interval dp> of length less than an

assigned norm d
t having p as middle point, and the corresponding

region RP of span less than e, as in Theorem 5 of the present

chapter.

I>t and 7 denote the two parts into wnich the plane is

divided by the Jordan curve, and of these let be that part to

which Q belongs. Then since P is a limiting point of the points
of 0, there is a point P, of inside RP . Q can be then joined to

PI by a simple polygonal line of a finite number of sides.

Now let e take all the values of a sequence

<?i, 6j, ...

of continually decreasing positive quantities having zero as limit,

then d also describes such a sequence, and therefore, by Theorem 8

of Ch. IX, P is the only point internal to all the regions Rp for

each value of ey
and is therefore the sole and only limiting point of

the points P,, P2 , ... of chosen inside these regions; thus the

polygon of a finite number of sides joining Q to 1\, together with

the simple polygonal lines PiP2 ,
PSP3 , ..., (each drawn so as not

to have any point except its first end-point common with any of

the preceding), forms such a polygon as was contemplated in the

enunciation of the theorem. Q. E. D.

The boundary of Csgood's region (Ex. 1, Ch. IX) is an example
of a curve which divides the plane into two parts but is such that

there are points of the curve which cannot be joined to points not

OL the curve by polygons such as were contemplated in the

enunciation of the preceding theorem ;
such a curve is of ccurse

not a Jordan curve.

Schoenflies* has shewn that a complete curve (closed con-

nected set) is a closed Jordan curve if it divides the plane into

two parts, and is such that any point of it can be joined to any

point in either paru by a finite number of stretches consisting only
of points of that part.

141. Sets of arcs and closed sets of points on a Jordan
curve. It is now clear that the theory of sets of intervals on

a straight Hue, gives us a corresponding theory of sets of arcs on

a Jordan curve. It is not necessary to recapitulate the details.

In the same way we get the theory of closed sots of points on

a Jordan curve, such a set being always complementary to a set of

open arcs.

*
Lot. cit., ?p. 221-2, footnote f.
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The following is an example of a closed set of points on a

Jordan curve, and its complementary set of arcs.

This closed set presents the interesting feature that, though it

is dense nowhere in every region and on every Jordan or other

curve, its projection on either of the coordinate axes consists of

every point of a segment*.

Ex. Take a unit square, and dot the ends of a diagonal : all dotted

points are to belong to the pattern (set) and are called primary points.

Next divide the square into nine equal squares and dot the four corners

of the middle square.

Our pattern is to lie entirely in those of the small squares which contain

the chosen diagonal ; in the others we may erase the dividing lines. The

Fig. 44.

' Math. Ann. ua. pp. 2l286. This was supposed by Scboenflies to be

irapo.Hsible (Berieht, p. 87), and is interesting in relation to Baire'n work, see 135.

Baire shewed that if /(.r, y) is a function which is continuous with respect to x and

also with respect to y, and 1C is the set of points at which the oscillation of f(x, y)

is greater than or equal to k, then K is a set containing no stretches or curves. It

follows that such a function cannot be totally discontinuous on any stretch or

curve. The converge is not true, as is shewn by the above example.
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two extreme squares are to contain the same pattern as the large square
on a Binaller scale, and the middle square ia to contain the same pattern

turned through a right angle round the centre of the square. These

indications suffice to construct all the primary points. Fig. 44 shews tht>

lie of the primary points constructed up to the point where the small squares

have a side jV- The subsequent primary points all lie in the small squares

drawn in the figure, each of these small squares contains the main pattern on

a small .scale, either not turned through any angle or turned through a right

angle.

The secondary points consist of all the limiting points of the primary

points, and are therefore internal points 01 the small squares at every

stage.

The pattern consists of all the primary and secondary points.

If / be any line parallel to a side of the square, it is either one of the

bounding lines of the first central square, or it meets one of the first three

small squares and one only. In the former case it contains a primary point,

but no .secondary point : since the pattern repeats itself in the small squares

the same will be true if is a bounding line of any small square. In the latter

ca.se, when I is not a bounding line of any small square, it outs a single small

square at every stage, and therefore contains the single secondary point

which is internal to all these squares. Thus every such line I
.
contains

a point of the pattern.

In other words :

The pattern 'projects into a side of the square: the projection, is (1, 1) except

at thf primary points -which correspond in pairs to a countable set of points

everywhere dense on the side of the square.

A secondary point P has the property that, given any small quantity *,

a square can be described of side < , having P as internal point, such that

the points of the pattern in this square project into the same segment a., the

square itself.

By construction the pattern is a closed plane set of points. Any point P
of the set is such that, given any small quantity ,

one of the small squares
can be found of side < t containing P as internal point or corner, and since

thin square contains a pattern similar to the whole pattern, it follows that P
is a limiting point of the pattern. Thus the pattern if a perfect set.

It is easy to see also that it is dense nowhere, since iu every small square
there are squares containing no point of the set.

The pattern is not a connected set, for a straight line drawn perpen-
dicular to the chosen diagonal and dividing it in the ratio 7:11 does not

contain any point of the pattern although there are points of the pattern on

each side. Since the pattern is reproduced in every small square it follows

that the part of the pattern in any square, however small, is not connected.

No arc of a curve, therefore, however small consists entirely of points of

the pattern.

If however we join the two primary points on any ordinate by a straight

line, we get a Jordan curve, on which the pattern consists of the end-points
and external points of a set of arcs. This is most easily proved as

follows :
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Divide the segment (0, 1) of the .r-axis into five equal part*, and make the

parts (, $) and ($, \) correspond projectively to the two largest aegments of

ordinates joining primary poirita, viz. the segments (i, J) to (J, |) and (|, $)

to ( jj , ).
The order of the points in these segments is to be maintained, viz.

from left to right on the .r-aiis and upwards in the square (Fig. 45). The points

jf

it

Fig. 45.

of the pattern- in the three squares about the chosen diagonal in order arc then

to correspond to points in the three remaining intervals of the .r-axis in

order.

In each of the small squares and small segments this correspondence
is carried further, care has only to be taken that the proper directions in

the small squares are chosen, as indicated for

instance by the arrow-heads in Fig. 46.

Continuing this process in each of the small

squares ad infinitum, we have set up a (1,1)-

correspondence maintaining the order between the

primary points and the end-points of the black

intervals on the #-axis.

Extending this correspondence in the usual

way to the secondary points and the external

points of the black intervals, we have established

a (1, ^-correspondence between the points of the

pattern and the }oints of a perfect set on the

straight line, the parts of the ordinates between

pairs of primary points corresponding to the

black intervals of the perfect set, and the order

being throughout maintained. This correspond-
ence is clearly continuous. Thus the pattern is a

perfect set dense nowhere on a certain Jordan curve, and projects into th* side

of the square.

D I 1 D

Fig. 46.
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POTENCY OF PLANE SETS.

142. The Theory of Potency in higher space is in all esnentials

identical with that in linear space, since, ad' has been shewn in

Ch. VIII, all the points of a plane, or of space of any finite (or

indeed countably infinite) number of dimensions, are of potency c,

so that any set of points in the plane or higher space has the

same potency as a certain linear set. Thus the only potencies

which can occur are those which occur on the straight line, and,

as there, the only known potencies are, beside finite numbers, that

of countable sets a, and that of the continuum c.

143. Countable sets. A countable set is, as before, one

such that the elements of it can be brought into (1, ^-correspond-
ence with the natural numbers. The coordinates of a countable

set of points are, by Theorem 3, Ch. IV, clearly countable; con-

versely, any set of points whose coordinates are countable, is itself

countable ; thus the rational points in the plane or higher space
are countable, and so are the algebraic points.

When arranged in countable order a countable set will be said

to form a progression, precisely as on the straight line.

Cantor's Theorem, that a set of non-overlapping regions is

always countable, has been proved in Ch. IX, as well a c the

theorem that a set of overlapping regions may be replaced by
a countable number of them having the same internal points
as the whole set.

Theorem 9 of Ch. IY, which states that any isolated set of

points is countable, is equally true in the plane or higher space,

and may be proved in precisely the same way as on p. 42, using

regions instead of intervals. The corollaries follow as a matter

of course.

The extended Heine- Bore 1 Theorem has already been proved
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As already mentioned in CL IX, the whole theory of deriva-

tion and deduction, adherences and coherences, is true in space of

any finite number of dimensions, and requires no fresh proof for

the plane. In particular any set which has no component dense in

itself is countable.

The proof given on p. 43 of the theorem that a countable set

is never perfect (Ch. IV, Theorem II), applies equally for the plane

or higher space, using regions instead of intervals, and the span

instead of the length.

144 The potency c. It has been shewn that the potency
of all points of the plane, or higher space, is c, and that the whole

plane can be brought into (1, 1)-correspondence with the interior

of a circle
;
it follows, since any internal point of a region can be

surrounded by a circular area lying entirely inside the region, that

the potency of all the points of any region is c.

The theorem that the potency of any perfect set is c, may
be most simply proved as follows by projection.

Project the set on to a straight line. If there be any isolated

point P in the projection, and Q be any one of the points of the

perfect set which project into P, since Q is a limiting point of the

given set, there are points of the given set as near as we please to

Q, and these cannot lie off the line PQ, because there are no points

of the projection as near as we please to P. Thus Q is a limiting

point of the section of the given set by PQ, and therefore this

section is dense in itself. On the other hand, if the projection

contains no isolated point it is dense in itself, thus in any case

either the projection or the section is dense in itself. Now
both the projection and the section are closed sets ( 104),

thus one or other is perfect, and has therefore the potency c.

In either case the perfect set has a component of potency c,

either the section itself or the component consisting of the

nearest point on each ordinate to the corresponding projection,

and is therefore of potency not less than c
;
on the other hand

since the potency of the plane is c, the perfect set is of potency
not greater than c, and is therefore of potency c*.

* This important theorem, which had been enunciated by Cantor, was first

proved for plane gets by Bendixson, Bin. Svensk. rti. Handl. 9, No. 6 (1884), using

continued fractions. Another proof may be foand in Schoenflies, p. 86. The

Quarterly Journal of Pure and Applied Math, No. 143 (1905) contains a proof

ab initio in which the potency of the plane, or of n-dimensional apace is not pre

assumed to be c, a perfect set being here considered as a special case of an

ordinary inner limiting set.
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145. As in the straight line, limiting points may be cksaified

into those of countable and those of more than countable desfree

according to the potency of the component of the given set inaide

a small region containing the point. The whole theory of the

Nucleus is precisely the same as for linear space, and may be

developed as in Ch. IV, 25, using regions instead of intervals.

In like manner the discussion of 2630 of the same chapter

is applicable to the plane and higher space.

146. Ordinary inner limiting sets*.

DBF. Given a finite, or countably infinite series of sets of

regions, overlapping in any way, the set of all the points each of

which is internal to at least one region of each set is called the

inner limiting set of the series of sets of regions, or an ordinary

inner limiting set.

THEOREM 1. Any ordinary inner limiting set may be defined

by means of normal regions, that is, by means of a series of sets of

regions, such that (a) the regions of each set are non-overlapping and

therefore countable, and (b) each region is internal to a region of the

preceding set, possibly however with common boundary points.

The property (a) of the normal regions follows from Cor. 2

of Theorem 14, Ch. IX; (b) is evident, since wo only have

to cut off from the regions of the second set all parts external to

the regions of the first set, and so with each successive set
;

it is

clear that, in so doing, a region of the second set which is reduced

will have boundary points common with a region of the first set,

and so for the other sets.

It now follows at once from Theorems 7 and II of Ch. IX, that

unless the span of the normal regions decreases without limit, the

inner limiting set will contain a perfect component, and will there-

fore have the potency c. We have therefore only to investigate the

case when the span of the normal regions decreases without

limit, in which case, each series of normal regions, one from each

successive set, lying each inside its predecessor, defines one and

only one point, which is a point of the inner limiting set, unless,

from and after some stage, all the regions have one common

boundary point.

LEMMA. If an inner limiting set is such that the span of its

normal regions decreases unthout limit, and also that we can assign
a series of constantly increasing integers

r\, ra ,

*
Proc. L. M. S. Ser. 2, Vol. in. Part 5, p. 371 (105).
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and corresponding to these a region of the i\th normal set which

contains two regions of the rjh normal set entirely internal to it,

etich of which contains two regions of the r3th normal set entirely

internal to them, and so on, then the potency of the inner limiting set

far a,

To prove this, let us denote the normal region of the ?\th set

by dnt and the two regions of the rath set which it contains by
</, and dnn ,

and continuing this system of notation, let us denote

by dyoi and dmi the two normal regions referred to in the

enunciation, which lie inside the region already denoted by d,vi

where N denotes any combination of zeros and ones with n figures.

Since these regions have no common boundary points to

complicate the issue, every series of them lying one inside the

other defines a point of the inner limiting set, and conversely.

To each such series of regions, however, by our system of notation,

corresponds one non-terminating binary fraction, which, if dNl be

any region of the series, begins with the figures denoted by N ;

conversely to each non-terminating fraction there corresponds such

a series of the regions. Thus there is a (1, 1 ^correspondence
between the points of our inner limiting set and the non-

terminating binary fractions, so that the inner limiting set is of

potency c.

THEOREM 2. An ordinary inner limiting set which has a

component dense in itself has the potency c; otherwise it is countable.

By the theorem of the Nucleus, due to Cantor, any set which

has no component dense in itself is countable, therefore we only
have to prove the first part of the theorem.

Suppose the given ordinary inner limiting set to have a

component U which is dense in itself. Let P be any point of U,.

then there is a region dm of the first normal set containing P as

internal point, and since P is a limiting point of U, there will be

another point Q of U inside the region d^.

Round these two points P and Q as centres we can then, since

they are both internal points of c 01 , describe circles external to

one another, and entirely internal to dm . Since, as has been

remarked, we only have to prove the theorem when the span of

the normal regions decreases without limit, we can assign a stage

at which the span of all the normal regions is less than the radius

of the smaller of these two circles
;
at this stage the normal regions

containing P and Q will be distinct, and both internal to dn .

Denoting these two regions by dwl and </
til] ,

there will be in each

a component of U which is therefore dense in itself, and the
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argument can be repeated. Thus the condition of the Lemma is

satisfied, and the inner limiting set is therefore of potency c.

Con. Since the component of an ordinary inner limiting set

internal to any region is itself an ordinary inner limiting set, it

follows that the degree of any point of an ordinary inner limiting

set is eitfiei' finite, a or c.

147. The theorems given in Ch. IV now follow immediately
for ordinary inner limiting sets in the plane or in w-dimensional

space. The proofs there given only require verbal modification,

"region" being used instead of "interval," and "span" for

"length." These theorems may be enunciated in the following

form. If any set of points E be taken, and regions described

round the points of E, so as toform a series of sets of regions, whose

inner limiting set contains E as a component,

(1) The inner limiting set consists of E, together with certain

points of the first derived set E' : the latter points may sometimes be

absent:

(2) TI>e regions may be so constructed that the inner limiting
set contains every point of If:

(3) If the content of the regions is ever less than that of E\
there is a more than countable set of points of E' not contained in

the inner limiting set:

(4) The potency of the inner limiting set is the same as the

potency of E', unless E contains no component dense in itself, while
"

is more than countable.

(5) If E contains no component dense in itself, we can so

arrange the regions that the inner limiting set consists of E alone;

if however E' be more than countable, the regions can be so arranged
that the inner limiting set is either countable or has the potency c.

(6) In general, we can so arrange the regions that those points

of the inner limiting set which are not points of E are limiting

points only of U, the greatest component of E which is dense in

itself.

(5) in conjunction with Theorem 2 gives the necessary and

sufficient condition that a countable set should be an inner limiting
set, viz. the countable set must contain no component dense in

itself.
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PLANE CONTENT AND AREA.

148. The Theory of Content, as developed in Chap. V, is again
unaltered in all its main features when we come to deal with two

or more dimensions ;
it receives, however, a vast extension from the

fact that we have to distinguish between linear content, plane

content, three-dimensional content, and so forth.

149. The theory of plane content in the plane. This

theory is practically the same as that of linear content in the

straight line, and generally as n-dimensional content in space of

n dimensions. The definitions and properties given in Ch. V
require little more than the substitution of the word regions
for intervals, to be valid as they stand. As however there are

one or two alterations of a more than verbal character which

slightly complicate the issues, the discussion is here shortly given
for the plane, and can then without difficulty be modified to suit

higher space.

The principles which govern this theory are the same as in the

straight line :

(1) The content of a plane set of points, where it exists, is

to be a non-negative quantity, and depends only on the relative

position of the points of the set, not on its position as a whole in

the fundamental region,

(2) The content of the sum of two sets having no common

points is to be the sum of their contents.

As in the straight line we started with the content of intervals

and sets of intervals as the basis of the whole discussion, so now
we start with regions, and, as simplest form of regions, with

triangles.
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150. Content of triangles and region*. The content of
a triangular domain is taken to be its area, measured in the usual

way, by the product of its base and altitude. Since then a

triangle with an edge contains the same triangle without an

edge and lies inside a triangular domain, whose content diflfeix

by as little as we please from that of the original triangle without

its edge, it follows that, by principle (2), the content of any

triangle is the same whether, or no, any of its boundary points

be included, and is the area of the triangle. The content of any
finite number of triangles, without common points, is then the

sum of their areas.

When we come to an infinite number of non-overlapping

triangles, we know, by Cantor's Theorem, that they are countable,

and it may easily be shewn, as on the straight line, that their

areas form an absolutely convergent series if the fundamental

region is finite. We define the content of a set of non-overlapping

triangles to be the sum of their areas, and this, whether, or no,

some, or all, of the edge points of each triangle be included.

We have now to shew that neither of our principles is violated

by this definition. It is clear that the content is not negative,

but it is not clear that it is unique, that is that it depends only

on the set of points, not on the mode in which this set is

divided up into triangles ;
if this is so, however, it is then clear

that neither of our principles is violated. This doubt can be set

at rest precisely as on the straight line, but the reasoning is some-

what complicated by the fact that a triangle, unlike an interval,

has a more than count able set of boundary points.

LEMMA 1. If a triangle contain a set of non-overlapping

triangles, such that the content of the set of triangles is less than

that of the first triangle, there is a more titan countable set of
internal points of the first triangle which are external to every

triangle of the set.

For let e be any small positive quantity less than the difference

between the content of the set of triangles,and the area of the first

triangle.

Then we can enclose all the points on the perimeter of the

first triangle in three triangles the sum of whose areas is less than

\e, and we can increase the area of each of the triangles of the set

inside the first triangle by so little that the sum of the parts
added is less than \e ; finally, we can, unless there is a more than

countable set of points of the first triangle which are not internal
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to these triangles, enclose every one of them in a countable set of

triangles of content less than {e. When this has been done, since

the points of the first triangle including its periphery form a closed

set, a finite number of the triangles so constructed will suffice, so

that every point of that closed triangle is internal to at least one

of the triangles ;
but the sum of the areas of these triangles will be

greater than that of the given set of triangles by less than e, and

therefore less than the area of the triangle, which, by elementary

geometry, is impossible. Thus there will be a more than count-

able set of the internal points of the first triangle not internal

to the triangles we had constructed and thereforp external to

the given set of triangles. Q. E. D.

COR. However a, triangle be divided up into triangles, so that

no internal point of the first triangle is external to the small

triangles, the content of the fsmall triangles is equal to that of the

first triangle.

THEOREM 1. The content of a set of non-overlapping triangles

is unique. For suppose two different sets of non-overlapping

triangles to be given, such that every point which is not external

to the one set is not external to the other, then, in order that the

content of the set. of points not external to either set may be

unique, it is necessary and sufficient that the sum of the areas of

the one set of triangles should be the same as that of the other.

The parts of one of the first set of triangles each of which

belongs to one of the second set of triangles, are either them-

selves triangles, or polygons of at most six sides, which can

therefore be divided up into at most three triangles; supposing
this done, we have a third set of triangles, the points of which are

again the same as those of either of the other sets. By the pre-

ceding Lemma the sum of the areas of those of the third set of

triangles which lie inside each of the first triangles is the area

of the latter triangle, and therefore the sum of the areas of all

the triangles of the third set is the same as that of all the

triangles of the first set. Similarly it is the same as that of

all the triangles of the second set, therefore the sum of the areas

of all the triangles of the second set is the same as that of all

the triangles of the first set. Q. E. D.

We have now proved that the content so far as it has now
been defined is in accordance with our two principles. We have

incidentally defined the content of a set of overlapping triangles, and

tfie content of a domain, or of any region which is, as a set of
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points, equivalent to a set of triangles, and the content of a set of
such regions, viz. the content is in all these cases that of any

equivalent set of non-overlapping triangles.

THEOREM 2. ADDITION THEOREM FOR CONTENT OF SETS OF

DOMAINS. Given two sets of domains of contents 1^ and /,, and

calling the content of their sum I and the content of their common

parts /',

The proof of this theorem is identical with that for the

corresponding Theorem 2 of Ch. V, using triangles instead of

intervals.

151. Content of a closed set. Since the complementary

points of a closed set form a set of domains, the black regions of

the set (p. 202), it follows that we have DOW, in accordance with

our second principle, defined the content of a closed set as the

difference between the content of thefundamental region and that of
the black regions.

It was already pointed out in Ch. VIII that the content of

the perfect set there defined as the boundary of a certain region
in Ex. 4 was zero, while that in Ex. 5 lies between

-,

5
5 and f.

Exactly as in Ch. V, using regions instead of intervals, it

may then be shewn that'll content IP of a closed set of points is

the lower limit of the content of a set of regions containing the

points, and the upper limit of the content of closed components, of the

closed set.

The original definition of the plane content of a closed set, or

of n-dimensional content in space of n dimensions, was given by
Cantor (Math. Ann. xxm. p. 473), and is only in form different from

that given above. Cantor describes a circle, or n-dimensional

sphere of radius e round every point of the closed set, and defines

the content of the set of points as the limit of the content of

these spheres when e is indefinitely decreased. As in Chap. V,
it may be shewn that this definition agrees with that given
in the text.

As on the straight line, the set consisting of all the points
common to two sets being called their sum, and the sum con-

sisting of all their common points their common part, we have
the same connection between the two closed sets and their sum
and common part as we had in the case of regions.

16
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THEOREM 3. If Ol and G9 be two closed sets of points having

no point common, the set consisting of QI and G9 together is a closed

et of content equal to the sum of their contents.

THEOREM 4. // a closed set G of content I contain a closed

component of content J, it contains a closed component of content

/ /- (where e is as small as we please), having no point common

with tlrt former component

THEOREM 5. ADDITION THEOREM FOR THE CONTENT or

CLOSED SETS.

// G! and Gt be two closed sets of points of contents Jf, and /,,

and G their sum, and G' their common part, G and G' are both

closed sets, and, if I and I' be their contents,

152. Area of a region. It is to be noticed that a domain

always has a content, and so has a closed region, but we have not

denned the content of the most general region, and the same

doubt remains as to whether every region has a content as in the

case of any other open set of points.

The concept of the area of a reunion, though intimately con-

nected with that of plane content, is not identical with it. If two

regions which do not overlap, together form a single region, they
must have a curved arc, as common boundary; this arc then

becomes part of the interior of the single region which is their

sum. It is one of the fundamental properties of the area of a

region that the latter region is to have as area the sum of the

areas of the two regions into which it is divided; the curved

boundaries however are not to be allowed to complicate the issue.

Now it is clear that area cannot be identical with plane

content, since, if the common boundary arc were of positive plane

content, the sum of the areas of the two regions would be

greater than the area of the region which is their sum.

Hence the following definition :

// the content of a certain region without any edge is the same as

the content of tlie same region together with all its boundary points,
the common value of the content is called the area of the region, and
the region is then said to be quadrable*.

We have already had an example (Ex. 5 of Ch. VIII) of a

regien which is not quadrable, the following is another such region ;

*
Jordan, Court d'Analyse, i. p. 20 ; Lebesgue, Integral, Longueur, Aire, 12
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the boundary of this region gives OB another example of a plan*}

perfect set of points nowhere dense and of positive content.

Ex. 1. Take a unit square, divide it into nine equal squares, and blacken

those (3+3-1) of them which lie about the diagonals of the unit square

(Fig. 47).

Pig. 47.

Next divide each of the remaining (31)* squares into 3* equal squares,
and blacken those (3

2
-f 3s -

1) of them which lie about the diagonals, and so

forth.

The blackeaed squares form at the end of the process a single region,

whose rim is the periphery of the square ;
the remaining boundary points

form a set which is not only dense nowhere in the plane, but also on every

straight line or curve, since none of the points lie on the diagonals of any of

the squares used in the construction, and indeed every point on one of those

diagonals can be surrounded by a small region lying entirely inside the black

region, as is dear from the construction.

The black region together with all its boundary points constitutes the

unit square. The content of the black region without its boundary points i

IS 2
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however less than the area of the unit square, for, denoting it by Idt it ia

clearly given by the following expression :

Thus

153. The region constructed in the preceding example is not

simply connected. The following is an example of two simply
connected regions, neither of which is quadrable. The common

boundary of these regions is a Jordan curve, and therefore a

closed set of points, and has positive plane content. Thus, we

see that not only the general perfect set nowhere dense may have

positive plane content, but even a curve, and still more specially a

Jordan curve, may have positive plane content*.

Fig. 48.

* The property given in Theorem 4, Ch. XIII, gave occasion to the first con-

struction of a carve of this type by Osgcod, Trans, of the Amer. Math. Soc. iv.

p. 107 (1908), and Lebesgne,
" Sur le probleme des Aires," Bull, de la. Soc.

Math, de France (1903). The method, whioh is essentially the same in both

papers, is a slight modification of that given by Hilbert, loc. cit. supra, p. 168;

conversely, Ex. 2 (p. 245) may be adapted to give a new representation of the plate
on the straight line. The points of Osgood's carve are constructed in isolated

stretches or segments of straight lines ; looking on these as beads, they are to be

supposed first arranged in order, more and more beads, smaller and smaller in

size, being inserted between each pair, and finally the carve threaded through

them, without disturbing the order. This process, though quite satisfactory for

demonstrating the existence of such a curve, is not altogether favourable for

enabling us to picture its form. It would be easier to picture the curve if the

beads were threaded one by one consecutively. The example in the text was

constructed with this end in view.
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Ex. 2*. Takf a unit square : divide it up into regions as in Fig. 43, viz. :

(1) a cross of area A\ (double shaded) ;

(2) a band round the rim, from one side of thf hose of the cross to the

other, of area yt (single shaded) ;

(3) four small squares, each of are*, Jj (e.g. *i 1 \).

Here Xi+yi +ti =*l.

In the figures the parts which are double shaded will be referred to as if

they were coloured green, and single shaded parts as if they were blue. Thua

(1) will be supposed to be coloured green, (2) Wue, and (3) to be left white.

The regions (1) and (2) are simply connected.

In each of the small white squares the construction is to be repeated,

using numbers #2 , y8 and 2 (*$*% l~a) f r toe ratios of the contents of

the regions in each small square to the area of that square, and arranging th.it

each small green cross has its base on the large green cross, so that together
the green crosses form a single simply connected region : the blue bands also

form together a single simply connected region.

t-*
''

'1

Fig. 49.

This construction is to be carried on ad infinitum. We then get green and
blue regions which ultimately leave no white regions over in the unit square

*
Quart. J. of Math. No. 145, pp. 8791 (1905).
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at all. The unit square, without its rim, is thus divided up into three parts :

(1) the blue region without its rim, (2) the green region without its rim,

(3) the common part of the rims of the green and blue regions.

The rim of the blue region consists of this curve (3) together with part of

the periphery of the square ;
these together form a closed curve, drawn in

Fig. 49, where the dotted part is, of course, only an approximation, since the

curve has an infinite number of tiny crosses, invisible in their details to the

naked eye, grouped about the dotted portions inside the small white squares

of Fig. 50.

Fig. 50.

The curve (3) is easily shewn to be a Jordan curve. We have, in

fact, only to divide the segment (0, 1) of the #-*xis into nine parts, and

blacken the alternate parts, beginning with the extreme parts. The five

black segments we now make correspond point for point continuously from

left to right with the five parts of the common rim of the largest green cross

and the blue region. The four white segments are to correspond to the four

white squares in Fig. 48. The correspondence is now continued in like manner,

by repeated division of the white segments into nine parts. When this has

been done ad infinitum, the straight parts of the common rim of the green
and blue regions correspond to the set of black intervals in the segment (0, 1

).

By the usual extension, any other point of the curve, being the single point
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internal to a series of white squares, each lying inside the preceding,

correspond* to the single point internal to the corresponding segments of

the .r-axis. Thus the remaining points of the curve (3) are in (1, ^-cor-

respondence maintaining the order with the points of the perfect set

complementary to the black intervals in question. Thus the points of the

common rim, being in continuous (1, 1 ^correspondence with the points of

the segment (0, 1), form a Jordan curve. Since the remaining part of the

rim of the blue region consists of a finite number of straight lines, this rim is

a closed Jordan curve*

The closed Jordan curve, being a closed set of points, has a content /, the

green and blue regions without rims also have contents Iu and 7t respectively :

the sum of these three sets being the unit square without its rim,

/+/*+/,= 1.

Now 7

where #i+yi ~l-*ti

therefore /=l-l
= Lt
*=

Thus 0</<1,
and by suitably choosing the proportions, / may have any value between

these limits; for instance, when *js=l-j,

This choice does not depend on the values of any finite number of the *s, but

on the mode of their ultimate formation, in so far as the content is to be

other than zero : the values of the *s at tho beginning of the series will only

modify the actual value of the content.
r

i he form of the curve will not be

altered in its essential features by thr. choice, but the smaller the content the

more of the curve will be distinguishable to the naked eye, and the less part
of the plane will be apparently completely covered by the windings of the

curve.

154. On the straight line we had nothing corresponding to

the difficulty of conceiving the most general form of region, in

the same way we had nothing corresponding to the difference

between the area and the content. The only form of region on

the straight line was the segment or interval, and its length
was the same as its content. It is due to this distinction between

sets of points on a straight line and sets in the plane or higher

space that the properties of the content given in 41 of Ch. V are

not immediately generalisable, or rather the obvious generalisations

are of no particular use If we enunciate similar theorems for

*
Similarly (he rim of the green region ia a closed Jordan curve.
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sets of domains we gain no fresh information, since the com-

plementary set of points, including as it does the rim of each

region, certainly has the potency c. On the other hand a closed

region, being a closed set of points, has a definite content, and, in

accordance with the principles already laid down, we shall define

the content of a set of non-overlapping closed regions to be the sum

of their contents.

We can now prove the following theorem, which corresponds

to Theorem 1, Ch. V.

THEOREM 6. If the content of a set of non-overlapping closed

regions be less than the content I of the fundamental region*, there

is a set ofpoints of potency c external to all the regions,

Let the fundamental region be denoted by F, and the regions

of the set by Rl , R,, Then the points which are external to

RI, /?,, ... constitute the inner limiting set of the regions F,

FRn FRi R*, ... and have therefore the potency c if they
are not countable.

Suppose, if possible, that these external points are countable,

then we can enclose the first in a triangle of area \e, the second

in one of area \e, and so on, where e is as small as we please.

These triangles together with Rlt
-

R,,... form a set of regions-

whose content differs from that of R
} , R^, ... by less than e, and is

therefore, if e has been chosen sufficiently small, less than that

el the fundamental region, which is impossible : therefore the

hypothesis that the external points were countable is untenable,

and they must therefore have the potency c.

As in Chap. V the converse of this theorem is not true, since it

is possible to construct a set of closed regions, dense everywhere in

the fundamental region, and of content as small as we please, for

instance as follows.

Ex. 3. Take the unit square and divide it into m- equal squares and
blacken the central square. Divide each of the small squares except the

central one into wi* equal squares and blacken the central squares in each, and
so on. The sum of the areas Id of the small squares is

* Without rim, or closed, or described by means of a countable set of non-

overlapping triangles.
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although the small squares are dense everywhere in the unit square.

There is then a more than countable set of points external to the small

squares and internal to the unit square, but t" <- r do not fill up any region,

however small.

155. The theorems of 46 are of general application and

the proofs there given only require trifling verbal alterations to,

make them valid for space of any number of dimensions. The

enunciations are here given for reference.

THEOREM 7. The content of a countable closed set is zero.

THEOREM 8. The content of a closed set is the same as that of

any one of its derived or deduced sets.

COR. A closed set which is more titan countable has the same

content as its nucleus.

THEOREM 9. The contents of two closed sett are equal if the

points of both which are not common to both sets are countable.

156. The investigations and theorems of 48 are again of

general application and the proofs only require verbal alteration ;

we have now, however, to distinguish more carefully between

regions in general, closed regions and domains, and it must be

noted that the analogous theorems in question, the enunciation of

which is given below, must be taken to refer to closed regions.

THEOREM 10. Given a countably infinite series Dt , D, , . . . of sets

of closed regions, each of which contains $nly a finite number of

regions, such that each region ofDn+1 is contained in a region ofDn

(with possibly one or more common boundary points), there is at

least one point common to a region from each set ; and the common

points form a closed set.

THEOREM 11. If to the hypothesis of the preceding theorem toe

add that the content of each Dn is greater than some positive quantity

> <jr,
the common points form a closed set ofpoints If of content ^g,

so that they have the potency c.

THEOREM 1 2. Given a countably infinite series D, , D,, . . . of sett

of closed regions, such that (1) each region, o/Dw4., is contained in a

region of Dn for every value of n, and (2) the content / of each

set Dn is greater than some positive quantity >j,
then (a) tliere it a
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set of paints such that each is internal to a region of Dn , for every

value of n, and (6) it contains closed components of content > g e,

where e is M -small as we please; so that the potency of tftese points

is c.

In the proof of this theorem, we must replace the intervals

Dn>r by triangles (or other regions having areas) Dn,r, so as to be

sure that we can cut off their rims without appreciably altering

their contents. The same care must bo taken in making the

necessary verbal alterations in the proof of Theorem 14, Ch. V, so

as to apply to the following theorem.

THEOREM 13. Given an infinite number of sets of closed

regions, in a finite fundamental region of content L, such that the

content of each set of regions is greater than some positive quantity

g, then a set of points of potency c exists, which is internal to an

infinite series of these sets of regions, and contains closed com-

ponents of content >g e, where e is as small as we please.

157, As in Ch. V the corresponding theorems for closed

sets now follow, and so do the whole of the following articles

( 52 67) to the end of the chapter, which give the definition

and properties of the content of measurable sets and of the inner

and outer measures of the content.

158. Calculation of the plane content of closed sets

Just as the actual calculation of the area of a region has become
a problem in simple integration, so the problem of determining
the content of a plane set of points can be reduced to one of simple

integration, when the content of its sections in one direction, and

that of one section in the perpendicular direction, are known. This

determination is obtained by the intermediate process of expressing
the plane content as the upper integral of the content of its

sections in any one-direction (Theorem 16). The reduction of the

problem of upper integration to that of simple integration is

properly one of the applications of the theory of sets of points to

other mathematical subjects ; but, since it is not at present em-

bodied in any text-book, it is reproduced in the next article.

In the same way the w-dimensional content of a closed set of

points in n dimensions can be calculated as an w-ple upper integral
of the (linear) content of its sections ( 163), or since the n-ple

upper integral can be replaced by an n-fold upper integral by the

repetition n times of the process of finding a single upper integral

(
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Each stage of the process may then, if we please, be effected

by an ordinary integration. In this way we avoid the introduction

of the content of any but linear sets.

The expression for the upper n-ple integral in a region fi as
fX'

an ordinary single integral ie Kfl + / Idle, where / is the content
Jx

of those points of the region for which the maximum of the

function is greater than or equal to k, and the limits are suitably

chosen. This expression gives us the content of any closed set in

(*
space of n dimensions in the form I Idk, where / is the content

Jo

of points of an $_, for which the section of the set by straight

lines perpendicular to the _, has content > k.

169. A few preliminary definitions and explanations are

necessary. We shall, for convenience, suppose that the regions

in which the functions we are dealing with arc defined, are finite

and simply connected; also that the functions themselves are

everywhere finite, and have finite upper and lower limits.

Consider any function. Take any point of the region for which

it is defined; describe round this point an n -dimensional sphere

having the point as centre
;
the upper limit of the values of the

function in this sphere will itself tend towards a definite lower

limit as the radius of the sphere is diminished : we call this the

maximum of the function at the point. The minimum at the

point is similarly defined. The excess of the maximum at P over

the minimum at P is called the oscillation of the function at P.

Taking any function whatever of n variables, defined for a

region of space of n dimensions, divide the region up into any
finite number of quadrable partial regions, and multiply the content

of each such part by the upper limit of the values of the function

in that part, and sum for all the parts; the limit of this sum,
:vhen the content of each part is indefinitely diminished, and

the number of parts accordingly increased, is called the upper

n-ple integral of the function. The lower n-ple integral is similarly
defined.

Now suppose, for simplicity of wording, that n = 3
; and, to

further simplify the ideas, let the region considered be a rect-

angular parallelepiped, having edges a, b, and c along the three

axes. Find the upper integral of the function with respect to z,

regarding x and y as constant, the limits being and c. Find
the upper integral with respect to y of the function of x and y
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ao obtained, regarding x as .constant, the limits being and b.

Finally find the upper integral with respect to x of the function

of so obtained between the limits and a. This final upper

integral is called the three-fold upper integral of the original

function, taken over, or with respect to, the parallelepiped. It

is clear how we may generalise this conception, and give the

corresponding definition for the n-fold upper integral of a function

of n variables with respect to any closed n-dimensional region.

The theory of ordinary multiple integration begins by shewing
that, when an ordinary n pie integral exists, it is always equal
to the n-fold ordinary integral; so that, moreover, the order of

integration is immaterial. The corresponding theorem in our case

does not hold. It is, however, at once obvious that the upper

n-ple integral is greater than or equal to then-fold upper integral.

It has been proved that the equivalence does exist in the case of

upper semi-continuous functions*; a corresponding theorem holds,

of course, for lower semi-continuous functions.

160. The consideration of semi-continuous functions is due

to Baire*f; they a-e defined as follows:

DEF. A function is said to be an upper semi-continuous

function if its value at every point is the upper limit of tlie values

assumed by the function in the neighbourhood of the point when this

neighbourhood is indefinitely diminished.

A corresponding definition holds for a lower semi-continuous

function : we have only to replace the word "upper" by "lower" in

the above definition. Baire has shewn not only that these functions

are point-wise discontinuous, but that they possess the following

characteristic property :

The points at which an upper semi-continuous function has

a value greater than or equal to k form, for each value of k, a

closed set. Similarly the points at which a lower semi-con-

tinuous function has a value less than or equal to k form a

closed set.

It is scarcely necessary to add that an upper semi-continuous

function actually assumes its maximum in any interval or region,

* "On Upper and Lowe- Integration," Proe. L. M. 8. Ser. 2, Yfcl. n. pp. 5266,
1904, Theorem 6.

1 Baire, Am. di Mat. <3}. Yol m. (1699).
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and a lower semi-continuous function its minimum. We note also

that a function not otherwise semi-continuous may be so at a

particular point.

181. Take any function whatever. At every point of the region

for which it is defined the function possesses a maximum, in the

sense explained above. This system of values determines, therefore,

a new function, the upper limiting function of the given function,

or simply the associated upper limiting function. Taking the

minimum instead of the maximum, we have in the same vay
the definition of the associated lower limiting function. Finally,

taking the excess of the maximum over the minimum thai is,

the oscillation we have a third function, the associated oscillation

function.

It ia proved by Baire that the first and third of these functions

are upper semi-continuous functions, while the second is a lower

semi-continuous function. Baire also proves that a function and

its associated upper limiting function have, in any open region, the

same maximum. The fact that this is not in general true of a

closed region is the explanation of the slightly complicated
character of the proof of the theorem of the next article.

THEOREM 14. The upper n-ple integral of a discontinuous

function of any number of variables is unaltered if we replace the

discontinuous function by its associated upper limiting function.
The lower n-ple integral is in like manner unaltered if we replace

the discontinuous function by its associated lower limiting-function.

The detailed proof is given for two dimensions : it i.., however,
of a perfectly general character, and requires at most a few trifling

verbal alterations to make it valid for space of any number of

dimensions.

Assume any small positive quantity e, and let us determine

a corresponding e, such that, if the region of integration be divided

into a finite number of small regions d, each of span less than e',

the following two properties hold: (1) $Fd is greater than

jFdw by leas than e, (2) 2,fd is greater than Jfdw by less than

e : here / is the function, F the associated upper limiting function,

P and f the upper limits of F add / respectively in the region

dt dw is the element of area, and J denotes upper integral. This

is evidently possible.
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Fig. 51.

Suppose ABGD to be one of the regions d (Fig. SIX Then, /
being the upper limit of / in ABCD, f is

> the upper limit of / in the open region

ABCD, that is, > the upper limit ofF in the

domain of that region, and therefore ^ F',

where P* is the upper limit of F in a closed

region A'ffC'D', lying inside ABCD, but

nearly coinciding with it.

Suppose the boundary of A'RC'D' drawn

so that the part of ABCD outside A'BC'D'

(shaded in the figure) has content less than

k, where, if M be the upper limit of F in the whole region of

integration and m the number of small regions d, mM1e<e. Then,
however we subdivide the shaded region and multiply each part
d' by the upper limit of F inside it and sum, the sum will be less

than e/m. Thus ^Fd over the now subdivided regions (i.e., the

original m regions divided into shaded and unshaded parts in the

manner indicated) lies between

lF'(A'KC'iy) and e + ZF'(A'ffC'D').

But the spans of the new regions are still less than e
; there-

fore ZPd over the new regions lies between fFdw and e+jFdw,
and may be denoted by e1 +fFdw, where ^ lies between and .

Thus . .....(1).

'(A'KC'D') ......(2).

Now, since, as was pointed out,

Zf(ABCD) >2

Comparing (1) and (2),

e, + jFdw < e + 2/( ABCD) ;

that is, since that latter summation is greater than ffdw by less

than e, and e can be made as small as we please,

Jfdw^Jfd*.

But, since F is never less than / at any point x
t JFdw > Jfdw ;

therefore

JFdw a= Jfdw. Q. E. D.

162. It is clear from the preceding article that we may in

discussing upper and lower integrals confine our attention to

semi-continuous functions. As, moreover, an upper semi-con-

tinuous function becomes a lower semi-continuous function if its

sign be changed, and vice versa, we may confine our attention to
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upper semi-continuous functionH. All the results will hold mutatis

mutandis for lower semi-continuous functions.

THEOREM 15. If I be the content of those points for which an

upper semi-continuous function has a value greater than or equal tfl

k, then I is an integrable (monotone) function ofk, and tfte upper in

tegral of thefunction (upper n-ple integral, if tfiere be n independent

/K'Idk,

where K' is any finite quantity greater than or equal to the

greatest value assumed by the function in the region considered,

and K is any finite quantity less than or equal to the lower limit

of the values assumed by the function.

For, as k. increases from K up to K'
t
I never increases

;
it is

therefore a monotone function. Since K and K' are finite, the

points at which the function /makes a jump greater than or equal
to e must, for each value of e, be finite in number, thus forming
a closed set of zero content; hence / is an integrable function of k'

For simplicity the proof of the second part of the theorem is

given only for one-dimensional space ; the necessary verbal altera-

tions for space of n dimensions can easily be made.

Since we know beforehand that an upper integral of the given

function, say/, exists, we can determine a small positive quantity
e such that, if the whole segment in which we are operating

(region of'mtegration) be divided into small segments, finite in

number and each loss than e, and if we multiply the length of

each of these by the upper limit of the values of fin it, and sum
for all the small regions, the result of the summation differs from

the upper integral in question by less than some assigned small

quantity e
1

. For brevity let us write en for e/2* ;
so that

Let us divide the segment (K' t K) of the Tf-axis into n + 1

equal parts, where n is any chosen integer, and denote the points
of division by Klt K, t

...
,
Kn . Then the points x of the segment

(A, B) at which f(x) >Kr form a closed set, say G> of content Ir ,

contained in the closed set Gr+l of all the points of (A,B) at which

f(x) ^Kr+l ,
which is itself contained in the closed set Gr+t of all

the points at which f(x) > Kr+s ,
and so on.

We can therefore enclose all the points of (?, in a finite

number of intervals, in general overlapping, each less than '.

and the content of them lying between 7, and
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The content of the remaining segment, or segments, of (A, B)
lies between L /, e, and L 1^\ and the points of any one of

the seta G> which lie in them or on their boundaries form a closed

set of content lying between Ir 7, , and I, It .

In this segment, or these segments, we can now, in like manner,
enclose all the points of G, which lie in them, or on their bound-

aries, in a finite number of intervals, each less than e, so that

their content lies between /, /, g, and /, /, ej.

The segment or segments of (A, B) now left over have content

lying between L 7, et I, + Ii 0j and L /! /, + /,, that is,

between L I, e^ et and L -
/, ;

and inside these segments the

points of Or form a closed set of content lying between

lr I-t BI e2 and Ir /,.

Proceeding thus, we must, after at most n stages, have shut up
all the points of (A, B) in a finite number of intervals, of course

overlapping, each of length less than e'.

If we take only such parts of these intervals as do not overlap,

and multiply the length of each part by the corresponding upper
limit of/, we see that we get something less than

that is, less than SK + (/t + 7, + ... + / + S) k'+ eK', where k' is

the nth part of the interval (K, K').

Since this is greater than the upper integral in question, but

differs from it by less than e , the result at once follows, when we

make n increase without limit.

163. THEOREM 16. IfX (x) denote the content of the section of
a, plane closed set G by the ordinate through the point. x, then X (x)

is a semi-continuous function of x, and the upper integral ]X(x)dx

ofX (x) with respect to x is the content of the closed set.

More generally, taking space of n dimensions, let X (x) denote

the content of the hyperplane section of a closed set by the S^
through the point x of the x-axis perpendicular to that axis ; then

the same is true,

Take then any set of lines, parallel to the axis of y, having a

single limiting line, say p. Choose them in such a way that, as

they approach p, the contents of the corresponding ordinate

sections (which are, of course, also closed) of the given set G
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have a definite limit, say 7. Then we have to prove that the

section of the set by p has content greater than or equal to /.

We can evidently commence the set of lines at such a line

that all the corresponding ordinate contents lie between / e and

1 + e, where e is as small as we please. Project all these ordinate

sections on to the line p. Then, by Theorem 20, Chap. V, p. 96,

there is a set, say C, of (inner) content greater than or equal
to I e, contained in an infinite number of these projections
That is, taking any point of (7, and drawing its ordinate, this

ordinate meets an infinite number of the lines in points of G
;

the limiting point of these points lies, by our choice of the lines,

on p, and is therefore the point of C whioh we took. Since G,

and therefore the ordinate section of G by p, is closed, this point

belongs to the ordinate section by p. Thus this ordinate section

contains closed components of content as near as we please to /;
so that its own content is not less than /. Q. E. D.

Now consider the second part of the theorem. For simplicity

let us take the region of integration to be a square of side L.

Let e be any chosen small positive quantity. Then, by the

definition of content, / denoting the content of G, we can de-

termine a small positive quantity e", such that, if the square be

divided up into small rectangles of span less than e", the content

of those small rectangles which contain points of G lies between

/ and I + e.

Also, by the definition of an upper integral $X(x)dx, we can

certainly find a small positive quantity e less than e", such that,

if the segment (A, B) of the #-axis in which we are operating be

divided in any way into a finite number of parts, then, provided
the length of each part be less than e'

t
the upper summation

is greater than ]X(x)dx by less than e.

Now X(x) lies between and L: let us then choose any

Integer n, such that ne > L, and consider the closed sets Glt G3 , ...,

M **

where Gr consists of all the points x at which X(x)>- L.

Thus Gn is itself the section of G by the a>axis, and each Gr

contains the preceding Gr-\, while the remaining points, viz..

those of Gf Gr-n are such that at each

n r , . n-r+1 ,
L.

17
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First, let us determine /, so that, if the points of (?, be enclosed

in intervals each of length less than /, the

content of these intervals lies between /j

and Ii + e. Then let us enclose the ordinate

section of G by the ordinate through x, in

a finite number of small vertical intervals,

each of length less than e'.

In the remaining parts of the ordinate

marked black in Fig. 52 there are no points

of G inside or on the boundaries. Let P be

any point of such a black part ; then, since

G is closed, P is not a limiting point of G.

We can therefore describe a small square, _
with P as centre, whose sides are parallel to

the coordinate axes, and of length less than
Fig. 52.

e,', so that there is no point of G inside this square or on its

boundary. This being done for all points P in all the black parts,

we can, by the Heine-Borel theorem, determine a finite number of

the squares such that each point of the black parts is internal to

one at least of the squares. There being now only a finite number
of squares to consider, there is, of

course, a definite smallest of them.

Let the length of its side be ^(a?),

and let us continue its vertical sides

up and down to bound off a strip

parallel to the y-axis, of breadth

i(x) < BI, having the ordinate through
x as central line.

If we draw parallels to the .c-axis

through the ends of the vertical in-

tervals originally drawn round the

points of the ordinate section x, this

strip is divided up into rectangles, of

which those which contain the black

parts of the ordinate x, shaded in

Fig. 53, contain no points of G inside or on the boundary, while,

the linear dimensions of the others are less than e', and their

content lies between X(x) x e^x) and Le
l
x

(a;).

Now, n was chosen so large that X(x) differs from L by less

than e, and therefore from the upper limit of the values of X(x)
in el (x) by less_than e. Thus the_content of the plain rectangles
lies between [X(x) e]^ () and [X(x) + e] e (x).

Fig. 53.
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Now let us construct such strips and rectangles for every point
of (TJ. By the extended Heine-JBorel theorem (p. 202), there are

then a finite number of these strips, each of breadth less than e^,

which enclose every point of the closed set G
l

. Each strip is

divided, as before, into plain and shaded rectangles.

Proceeding in like manner to enclose those points of 6?, in the

remaining portions of the square (including those which lie on the

boundaries), and then the points of G3 not already enclosed, and so

on, we eventually get the whole .square divided up into plain and

shaded rectangles ;
in the shaded rectangles there are no points of

G, and the content of the plain rectangles lies between

2[X(x)-e]d and 2[X(x) + e}d,

where d is the breadth of any vertical strip and X (x) the upper
limit of the contents of the ordinate sections in d. Also, since the

span of each rectangle is, by construction, less than e, and there-

fore less than e", their content lies between / and /-f e, and may
be denoted by

Again, ^X (x)d differs from J X(x)dx by less than e, and may
be denoted by JX (as) dx + ffe. Thus

]X (x) dx + e
f

e-Le^I + 6e ^JX (a?) dx + 0"e + Le. ,

Since e can be chosen as small as we please, it follows that

Q.E.D.

COR. // the sections of a plane closed set by straight lines be

translated parallel to themselves according to any law by which the

plane set remains closed, the content of the set will not be altered.

164. From Theorems 15 and 16 we at once obtain the

following expression, giving the content of a closed plane set as

. f"
a single definite integral, viz., I Idk, where 7 stands for the con-

J o

tent of those points of the #-axis at which the ordinate sections of

the given plane set are greater than or equal to k.

It is clear that this result may be extended in various ways to

sets in space of higher dimensions. It should be noticed that

these formulae are exactly analogous to the ordinary formulae in

the integral calculus for areas, volumes, &c., and include them as

particular cases.

172
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From this formula a number of particular consequences are at

once deduced. For example, the necessary and sufficient condition

that a plane closed set should have zero content is that the points x

whose ordinate sections of the plane set have content greater than or

equal to k shouldform a set of zero content.

165. The function X ofx is not necessarily what is usually called

an integrable function. If it is an integrable function the upper

integral JX (x) dx is the ordinary or Riemann integral JX (x} dx.

An example of this was given in Ex. 4, Ch. VIII, where the section

of the plane set by the axis of x, being a perfect set of content

zero, X(x) is an integrable function. In that example X(x) was

zero everywhere and therefore the content of the plane set was

itself zero
; if, instead of making the ordinate sections of content

zero, we make them perfect sets nowhere dense of constant content

k (which is effected by suitably modifying the ordinate width of

the arms of the crosses), the content of the plane set would still be

Fx(*)d*~k.
J o

In Example 5, X(x) is not an integrable function, since the set

of points x at which X(x) is continuous (viz. the points where

,X(a;)
= 0), Ch. VIII, has not unit content. X(x) is however what

is now called a summable* function, since the points at which

X(ic)^k form a measurable set, and has therefore a generalised
or Lebesgue integral^. This generalised integral is in the case

of an upper semi-continuous function identical with the upper

integral^ ;
thus we have the following form of Theorem 16.

THEOREM 16 a. If X(x} denote the content of the section of a

plane closed set by the ordinate through the point x, the content of
the closed set is the generalised integral of X(x) with respect to x.

* "General Theory of Integration," Phil. Trant. Series A, Vol. 204 (1905), p. 243.

t Let the fundamental segment, or set, be divided into measurable sets in any
conceivable way, and let the upper limit of the values of the function in each

partial set be multiplied by the content of that set, and let the sum of these

products be formed ;
this is called an upper summation of the function ; similarly

using the lower limits of the function in the partial sets we get a lower summation

of the function. If the lower limit of the upper summations is equal to the upper
limit of the lower summations, the function is said to be summable, and the

common value is its generalised integral. No functions other than, eummable
functions are known.

J "General Theory of Integration," p. 241.
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Hence the content of the plane set, Ex. 5 of Cli. VIII, is

/
ri

Idk = I dk = I*,
Jo Jo

where / is the content of the typical ternary set on the straight

line
;
this agrees with the value of the content found in Ch. VIII

by direct calculation.

THEOREM 17. If X and Xi be the outer and inner measures

of the content of the ordinate section of a measurable set, such that

the set got by closing it is of finite content, by the ordinate through
the point x, X and X{ are both summable functions, and the

generalised integral of either is the content of the measurable set.

Let / be the content of the set, and e any assigned small

positive quantity. Let us take a closed component of the given
set of content greater than I e. Denoting by X' the content of

the ordinate section of this set, we have, by Theorem 16,

I-e<]X'dx.
Since X' is an upper semi-continuous function, the upper

integral is the Lebesgue integral, hence

/ e< the upper limit of the lower summations of X',

or, since X' is not greater than X i
,

I e < the upper limit of the lower summations of X%
.

Since e may be as small as we please,

/ ^ the upper limit of the lower summations of Xi
,

^ the upper limit of the lower summations of X.
Next let the content of the' set got by closing the given set be

denoted by S, and that of the complementary set by J, so that

Denoting by F' and Z' the quantities for the complementary
set and the whole closed set corresponding to X' for the given set,

we have, as before,

J ^ the upper limit of the lower summations of F*.

Now (Z' F') is the content of the difference of two closed sets,

that is of an inner limiting set*, containing the set X, therefore

* Theorem 89, p. 78.
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Hence

/ ^ the upper limit of the lower summations of (Z
r X\

^ the upper limit of (a lower summation of Z' minus an upper
summation of X).

But the upper limit of the lower summations of Z' is the

generalised integral of Z', that is, S; therefore

J^S the lower limit .of the upper summations of X,

that is,

/^ the lower limit of the upper summations of X,
a fortiori,

/^ the lower limit of the upper summations of X\

Now every upper summation of a function is greater than,

or at least equal to, any lower summation, so that a quantity
cannot be less than the upper limit" of the lower summations

without being less than the lower limit of the upper summations
;

neither can it be greater than the lower limit of the upper
summations without being greater than the upper limit of the

lower summations. Thus / must be actually equal to the upper
limit of the lower summations as well as to the lower limit of the

upper summations in the case of either X* or Xi
;
that is to say,

/ is the generalised integral of either X or Xi
,
and both these

functions are summable. Q. E. D.

COB. 1. Each ordinate section of a measurable set being

moved on its ordinate in such a manner that the (linear) content of
the section is unaltered, and that the whole set remains measurable,

the content of the whole set is unaltered.

COR. 2. At each point of a set of points of content A draw
an ordinate, and on it take any set of points of (linear) content B,

the content of tfo whole set so formed is AB.

Here, as elsewhere, the fundamental set need not be a linear

set, but may have a content of any number of dimensions.

166. Calculation of the content of any measurable set.

f*The preceding section gives us I Idk as the content of any mea-
JO

surable set (provided the set got by closing it has finite content),

here / is the content of the set of points of the fundamental set
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at which the inner (or the outer) measure of the content, is > k.

This, together with the preceding section, gives the solution of the

problem of the reduction of the calculation of n-dimensional

content to that of (n l)-dimensional content, and so ultimately
to that of linear content.

Bearing in mind the definition of a generalised integral, we
have the following rule for finding the content of an n-dimensional

set: Take any hyperplane section of the set, project the set on

to this hyperplane, and take any measurable set containing this

projection as the fundamental set S. Divide S up in any way
into a finite or countably infinite set of measurable components,

and multiply the content of each component by the upper (lower)

limit of the values of the (linear) inner or outer content of the

corresponding ordinate sections of the given set; summing all such

products, the lower (upper) limit of all such summations is the

content of the given set.



CHAPTER XIII.

LENGTH AND LINEAR CONTENT.

167. Length of a Jordan curve. Let o, plf fa, ... pn ,
* be

points of a segment (o, z) in order from left to right, such that the

distance between each adjacent pair of points is less than some

assigned norm d. Then the corresponding points

0, ?,,*.-..*..*
on the Jordan curve are such that the distance between each

adjacent pair of points is less than e, where e depends on rf, and

diminishes indefinitely with it. Let the perimeter of the simple

polygonal path OP! ...PnZ be denoted by ird . Then it may be

shewn, as follows, that ird has a definite (finite or infinite) limit,

when d is indefinitely decreased
;
this is called the length of the

Jordan curve.

THEOREM 1. Every Jordan curve has a definite length, which

may be either finite or infinite.

For let dlt dit ... be a sequence of decreasing positive quantities

having zero as limit, and BI, ey , ... the corresponding sequence of

radii for points of the Jordan curve, so that all the points of the

segment (o, z) within an interval of length ^rf< correspond to

points of the Jordan curve within a circle of radius ^e<. Then

the e's also form a sequence of decreasing positive quantities

having zero as limit. Let A 1} A be a series of polygonal

paths of lengths a: , a*, . ... inscribed in the Jordan curve, the

vertices of Ai being
P P P* i * *> rm{>

so that the distance between consecutive corresponding points

Pi. P*>-~Pmi

is less than dt, and therefore the segments PrPr+i are each less

than &.
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Then, fixing t, we can determine j so that for this and all

greater values of
j,

where e is any assigned small positive quantity.

Let the vertices of Aj be denoted by Qlt Qt ,
... Qni , and the

corresponding points by qlt qt) ... qni : and let the first and last of

the latter points internal to the interval (prpr+\) be
q*.

and q^.

Then the path Aj consists of the w,- portions Q*^, together
with the missing sides QA-I Qn , etc. : as to these latter there is

either one, or a pair, corresponding to each point pr , according as

<jf
A-i does not, or does, coincide with pr (Fig. 54).

"
t. j* 1

Fig. 54.

Now prqi<dj,

therefore Pr Q^ < BJ ;

similarly Pr+l QM < e> ;

and since PrQ\ and Pr+iQ* and the part of Aj between QA and

QM are together greater than the side PrPr+l of A{, it follows that

and therefore
a,- + > a,- .

Since e may be made as small as we please, this shews that,

given any integer i we can determine j so large that, for that and

all subsequent integers, a.j ^ ttf.

Thus the quantities (

-

approach a definite limit a, which is

their upper limit, and may, of course, as such be finite or infinite.

By exactly the same argument, using Bj and
fy instead of Aj and

a/ it follows, that if we have a second series of such polygons

B!, Bz> ... and b is the upper limit of their lengths, we can

determine j so that, for that and all subsequent integers,

bj 2 ait

and therefore b > a
;

but similarly a > b,

therefore a = b,

and the upper limits are the same.
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Thus however the polygonal paths be constructed, their lengths

have the same finite or infinite upper limit, or limits, so that the

Jordan curve has a definite length.

THEOREM 2. The. necessary <md sufficient condition that a

Jordan curve

*=/(<)> -y-*(0
should have finite length, is that the functionsf and

<j>
should have a

limited variation*.

For let a, a,, ... a^, b be the values of t corresponding to the

vertices of an inscribed polygonal path. Then since a side of a path
is not less than its projection on one of the axes, and not greater

'than the sum of its projections, the length of the path lies

between the greater of

i/(aO
-
/(a) |

+ |/(a,) -/(a,) |
+ ...

and the sum of these two quantities: the former of these is the

variation of/ and the latter the variation of < with respect to the

system of values a, a,, ... an_n 6. If both /and <j>
are functions

with limited variation, we can assign some finite quantity which

the sum of these two quantities cannot exceed, and therefore

the upper limit of the length of the path being finite, the curve

has finite length. Conversely if one of / and ^ be not such a

function, one of the two quantities may be made greater tban any

assignable quantity, and therefore the curve will have infinite

length. This proves the theorem.

A Jordan curve of finite length is said to be rectijiable^ ;
the

term rectifiable may also be extended to a Jordan curve of infinite

length, provided the only partial arcs of the curve which have not

finite length are such that the corresponding points of the

segment (o, z) always include one or both of the end points
o and z, (t

= t
,
or t=T).

A circle, ellipse, hyperbola, straight line are, in this sense, all

rectifiable Jordan curves.

*
Jordan, Cours ffAnal., 105 seq. If f(x) is a function of x, defined from

a to b, and we divide the interval (a, b) into n parts at the points a, alt a,, ... on_j,
b

t
the sum of the oscillations

ia called the variation of f(x) for the system of values a,.a,, ... an.lt b. If, for

every choice of these values, the variation is always less than some finite quantity

X, f(x) is said to be a function of x with limited variation.

t Jordan, toe. cit. Lebesgue, Int(yral, Longueur, Aire, 42.
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The argument of the preceding proof can be used tc prove the

following theorem :

THEOREM 3. The length of the arc of a rectifiable Jordan curve

offinite length from ti to t, where t>tlt is a continuous function of
t which never decreases. The same is true of any arc of a rectifiable

Jordan curve of infinite length, provided the arc does not contain

a 'point corresponding to o or z.

THEOREM 4. A rectifiable Jordan curve, whether of finite or

infinite length, has always zero plane content.

Suppose first that the curve itself has finite length L. Divide

it up into n equal arcs
;
then the distance of any point of any

such arc from any other point of the same arc is, by the definition

of the length, less than -
,
therefore we can certainly cover every

point of the curve by means of n circles of radius -
. The area

covered by these circles is not greater than n . IT .
- = IT .

n2 n

Since n may \>e made as large as we please, this area may be

made as small as we please ;
thus in this case the curve has zero

plane content*.

Next let the curve itself have infinite length. In the

corresponding segment (o, z) take a sequence of points o,, o.,, ...

having o as limit, and another zlt z^ t ... having z as limit. Then
the corresponding arcs (0,^), (02 2̂), have each finite length, and

therefore, by the above, we can enclose the first in small circles

covering an area less than j ,
the second in small circles coveringH

a
an area less than -^ ,

and so on
; and therefore the whole curve in

i

small circles covering an area less than e, so that the whole curve

has plane content zero. Q. E. D.

THEOREM 5. In calculating the length of a Jordan curve, we

may take instead of a simple polygonal path of a finite number of
sides, one of an infinite number of sides, or a finite or countably

infinite set of such paths, provided the limiting points of the vertices

of the path or paths are countable.

For let the limiting points arranged in countable order be

P,, P.
*

Jordan, Court d'Anal., I. p. 107.
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Then, as on the straight line, each oountably infinite set of

abutting chords of the Jordan curve forming a single pat>*

determines a pair of points of the set PI, P2 , ... so that we have

two consecutive limiting points, say P{, Pj. The path P^Pj has

a certain definite length, and we can determine a finite number

of the chords whose sum differs from this length by less than

5j: let Qi be the end point of these chords which lies nearest to

Pi, then the sum of all the chords from Qt to P< is less than

j^ : similarly we determine a point Q/ on the other side of P.

Now replacing all the chords from Q+ to Q/ by the two chords

QiP and PQi for all values of i, we get a finite path, whose

length differs from the sum of the lengths of the polygons in

question by less than e. This shews that the upper limit of the

length of such paths or sets of paths is the same as the upper
limit of the lengths of paths of a finite number of sides. Q. E. D.

168. Calculation of the length of a Jordan curve.

Suppose that / and < are both differentiable. Then the length
of the chord joining the points of the curve whose parameters are

$! and t.it lies between (t3 ^) multiplied by the upper and lower

limits of V/"
3 + <'2 in the interval (^, ,).

Thus the length of the path lies between the upper and

lower summations of V/
/s + ^'

1
, and therefore, in the limit, the

length of the curve lies between the upper and lower integrals

of V

Thus, if V/'
2
-f

<f>'*
is an integrable function (which will be the

case if /' and
<f>'

are each integrable),

(1).

Next suppose that /' and
<f>'

are not integrable functions but

is a perfect differential, say

we can then prove that*

<r(* ) ........................(2)
as follows.

*
Lebesgue, Lemons ur TlnUgraiion (1904), p. 61.
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Taking any point P on the curve of parameter ,, we can,
since /' and <' both exist, de- 2 rfi

termine a small quantity dlt such - 1 '. r >----
that for any point Q of the curve

whose parameter t, lies between Flg - 55t

tidlt the length of the chord PQ differs from

by less than e (t3 tj).

Further we can determine a small quantity d* such that for

any point Q of the curve whose parameter 2 lies between , d,,

'*&) + #'&) diners from

by less than e.

Thus for any point Q of the curve whose parameter lies

between , 8, where 8 is the lesser of d, d,t and d l (where d is any
fixed small quantity), the chord PQ differs from <r ( 2) tr (,) by
less than 2e (j ^).

Let us start from t<> and draw such a chord, this determines ,;

then from 2, draw such a chord, this determines 2. and so on '

Either after a finite number of such chords have been drawn, we

have reached T1} or else a countably infinite number of such chords

determine a limiting point tu , which is either T, or some point to

the left of T. In the "latter case, starting afresh from tm , we

repeat the process, and obtain f-+1 ,
< +2 ,

... and finally, if we do

not arrive at T, a limiting point w . 2 and so on.

Since a set of intervals is always countable, we cannot exhaust

all the Cantor ordinal numbers of the second class before we
arrive at a point of arrest, which cannot be other than T, since

from any other point we could proceed further. The set of

intervals so constructed is dense everywhere in (t , T), and has no

external points, so that, their content is the same as that of (t , T).

Further, by Theorem 5, the corresponding series of chords of the

Jordan curve may be used to calculate the length of the curve.

Now the sum of the lengths of these chords differs from

<r(T) <r(t ) by less than 2e(T 1 ),
and therefore decreasing

d and e indefinitely the result (2) follows.

169. Linear content on a rectifiable Jordan curve.
The linear content of a set of arcs on a rectifiable Jordan curve

with respect tc that curve can now be defined as the sum of their
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lengths; the linear content of a closed set of points on such a

curve as the difference between the length of the smallest

segment in which the set lies, and the content of the com-

plementary arcs in that segment, precisely as on the straight

line. The theory of linear content on a rectifiable Jordan curve

can then be 'extended to open sets, defining the inner and outer

measures of the linear content as respectively the upper limit of

the linear contents of closed components of tne set, and the lower

limit of the linear content of a set of arcs containing the set.

When the inner and outer measures of the linear content are

equal, the set will be said to be linearly measurable, and the

common limiting value will be called the content of the set.

Everything .said in the chapter on content of points on a straight

line will now have its correlative in the theory of linear content

on a rectifiable Jordan curve with respect to that curve; it is

unnecessary to go further into details on this point.

170. General notions on the subject of linear content.

It is to be noticed that, by Theorem 4, all sets of points on

a rectifiable Jordan curve are measurable sets and have the plane

content zero. On the other hand, given a plane set G of plane

content zero, it is not always easy to decide whether or not G lies

on a Jordan curve, or indeed whether it lies on any curve at all,

still less whether it lies on one, and only one, Jordan curve, and

whether that curve is rectifiable. We want a definition of linear

content in the plane from the point of view of the plane itself,

and to develop this theory independently of considerations as to

curves on which the set may He.

It will be seen that this theory is only in its earliest infancy, so

that there is very little which can at present be said about it
;

it

is clear however from the results to be given that it is by no

means a very simple or obvious theory*.
Two definitions of linear content have been given. The first

presents itself naturally, and we may assert with confidence that it

must have occurred independently to all workers in the subject.

It will be shewn however that it leads to surprising and even

paradoxical results:

(1) Even the linear content of such a simple set as a countably

infinite set of concentric circular arcs, with no other limiting point

* Prof. L. M. S. Ser. 2, Vol. 111. pp. 461477 (1906).
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except the centre, is not necessarily the sum of the lengths of the arc*,

but may be greater than this.

(2) The linear content of a closed countable set of points in the

plane is not necessarily zero. It may even be infinite.

The second definition of linear content does not affect these

anomalies.

The question naturally arises : Is it possible to give a different

definition of linear content, one, in fact, more consistent with what

our knowledge of sets on the straight line would lead us to expect?

Careful consideration suggests that such a definition is impossible.

Content, whatever its dimensions, is a property of a set with

respect to the fundamental region R. If the set lies in a funda-

mental region R' of lower dimensions m, there is every reason to

suppose that the wi-dimensional content of the set with respect to

R will depend not only on the m-dimensional content with respect

to R'
t
but also on the lie of R. In particular, the linear content

of a plane closed set of points lying on a curve whose arcs can

be measured may or may not be the same as the linear content

of the set with respect to the curve, according to the form of the

curve.

171. The first definition of the linear content of a closed plane

set of points is as follows :

DBF. Let small regions be described round the points of a

closed set G, as in the process of finding the plane content, and let

them be chosen to be circles of diameter d with the points of the

set as centres, and let F (d) be their content. lietf(d) = F(d)/d ;

then, iff(d) has a definite limit / when d is indefinitely decreased,

/ is called the linear content of G.

It is not clear from this definition of linear content that the

linear content / in the case of a closed set alwa'ys exists. In other

words, it is conceivable that f(d) may oscillate between certain

positive limits of variation. In the case of the plane content in

the plane or the linear content on the straight line this difficulty

did not exist, since F (d) is clearly a monotone function of d which

is continuous. It is, however, important to devise a definition by
which the content of a closed set is always, definite, since this

would enable us to extend the theory of linear content to open
sets, precisely as was done in the case of the ordinary content. If

it could be shewn that the limit of / (d) is not always definite for
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a closed set, it might be convenient to take the lower and upper
limits of variation of the limit as measures of the content.

There is another point which cannot be passed over. Tn the

case of the ordinary content (whether linear content on the straight

line, plane content in the plane, or /i-dimensional content in space

of n dimensions) it can be shewn that, if domains of span less than

d be described in any manner so as to enclose all the points of the

closed set, and the content of these regions be <t> (d), then <t> (d)

approaches a definite limit as d is indefinitely decreased, inde-

pendent of the form of the regions. Thus the choice of circles

with the points of the set as centres and of equal diameters d is

merely apparently arbitrary, and the ordinary content as originally

defined by Cantor by means of circles (or spheres) can be found by

using any convenient domains.

In the case of the linear content, however, if <I> (d)/d have

a definite limit as d is indefinitely decreased, this limit may be

quite different from the linear content I. It is easy to see that

the limit may be zero, even when the linear content / is definite

and positive (for instance, when the set lies on a straight line,

we only have to take the span of the regions in the direction

perpendicular to the straight line to decrease without limit com-

pared to d), but the limit may also be greater than the linear

content /.

If the set lie on a straight line, it is easy to shew that the

regions may be so constructed that we get for <l> (d) the limit 'MI,

but they cannot be constructed so as to get a greater limit.

Supposing for simplicity the set to be a closed segment AB, we

only have to divide AB into two sets Gl and Cra ,
both dense every-

where in AB, and describe circles round the points of GI with their

centres on one of the parallels to A B at a distance $d e, where e

is as small as we please compared to d, and circles round the

points of Cr3 with their centres on the other parallel. Such

sets of circles have a content differing by as little as we please

from 2dl.

On the other hand, whatever set G we have in the plane, of
linear content I, the content of a set of small regions of span d

enclosing the points of the set cannot exceed 2d(I + d'), where d'

vanishes with d. For each such region lies within a circle of

radius rf with its centre at any point internal to it. Therefore the

content of the small regions is not greater than that of a set of

circles of diameter *2d with their centres at the points of the set

By the definition of the linear content, the content of these circles
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is Id (I + d'), where d' vanishes with d
;
which proves the state-

ment made above.

It is not, however, always possible so to choose the regions as to

reach near the limit 2dl. Ex. 2 is a case in which, whatever form

of region we take, we cannot get.a content much, if at all, greater
than dl.

172. These considerations suggest the second definition of

linear content.

DBF. Let small regions of span d be described in any manner

round the points of the given closed set. Let their content be

$ (d\ and let <I> (d)/2d be denoted by $ (d). As d is indefinitely

decreased, let J be the upper limit of the variation of Lt
<f> (d) ;

J is called the linear content of G.
dxtt

By this definition the linear content J of a closed set is always

definite, and the content of a set of regions of span d round the

points of the set is less than Sd^J+d"), where d' vanishes with d,

but can, by proper choice of regions, be made as near as we please
to 2dJ.

If the linear content I exists, \I ^ /.

173. THEOREM 6. The linear content, whether I or J, of a

finite arc of a rectifiable Jordan curve is not greater than its length.

Let C be a finite arc of a rectifiable Jordan curve, and let the

length of C be L.

Let A and B be two points of G whose distance apart is less

than e, and a, 6, the corresponding points of the segment (o, z) of

the straight line
; further let p be any point of (a, 6) and P the

corresponding point of (7. Then since the distance of a from p is

less than the distance of a from 6, the distance AP is not greater
than e.

Let Q be any point of the chord AB, then

QP < AQ + A P < AB + AP < 2e.

Thus, if we describe a region round P of span less than d, it

will lie between the parallels to AB at a distance d + 2e on each

side of AB. Hence, if we describe such a region round every

point of the arc (AB being a side of the polygonal path of length
rre the limit of whose length when e is indefinitely decreased is

L), the content of these regions will be not greater than

2 (d + 2e) {ire + 2d]

y. 16
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where d and e are independent. Let us choose e so small that

vanishes with d
;
then <f> (d) will not be greater than a quantity

U>

which differs from irt by a quantity which vanishes with d, and

therefore the upper limit J of 4>(d) when d is indefinitely decreased

is not greater than L.

On the other hand we may divide the arc into two sets (?,, (?2

of points, both dense everywhere in the curve, and describing

circles of diameter d, so that those containing GI lie almost entirely

on one side of the curve, while those containing Gt lie almost

entirely on the other side, it may be inferred, as before, that the

area covered by these regions differs from 2dL by a quantity
which may be made as small as we please, and that therefore

the upper limit of <(d) when d is indefinitely decreased is not

less than L. Hence in all ordinary cases the linear content J is

also the same as the length.

Whether this is true in the case of a Jordan curve making
oscillations of a complicated. character remains uncertain.

A similar argument applies to /, since a circle of diameter d,

with P as centre, lies between the parallels to AB at a distance

COR, In the case of an arc of any ordinary curve (straight

line, circle, conic section, etc.} the linear contents I -and J coincide

and are eqiwl to the length.

For I this is an immediate consequence of the above proof,

since, by the roulette property of the circle etc., the area covered

by the circles will actually differ from dL by a quantity which

vanishes with d.

174. Linear content of a set of arcs on a rectifiable

Jordan curve. It is however certain that the linear content

of a set of arcs on a rectifiable Jordan curve of infinite length

may differ from the linear content of those arcs with respect to

the curve. This is proved by the following example in which the

linear content with respect to the curve is less than the linear

content.

Ex. 1. Take a countable infinite series of concentric circles of radii

11 1
'

2' 3'
'"' n f '"'

for all values of n, having the origin as centre.

Draw any radius of the first circle through 0, meeting the nth circle in
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Pn for all values of n. On the nth circle, at equal distances all round the

circumference, place 4(n+ l) arcs of equal length

the sum of all these arcs for all values of n is then e.

It is easy to see that these arcs lie on a rectifiable Jordan curve of spiral

form ; we can indeed construct such a curve by means of the concentric circles

and the radius OP\ t rounding off the fork points f\, J\, ... by means of small

semicircles. The linear content of the set of arcs with respect to such a recti-

fiable Jordan curve will then be .

It may however be shewn that the linear content of this set of arcs

(whether 7, or / if definite), i.s certainly greater than this, if e is chosen less

than ; the linear content with respect to the Jordan curve is thus certainly
t

different from the linear content.

To prove this consider that the arcs between consecutive arcs of the given
set on the th circle are of length yfc ,

where

1 f2w el TT 1 e
J -._ _ __ \ __ ____ - .- ^__|__ __ _L ... -- J- 111'

the distance between the &th and (+l)th circles is r/rr f\
5 therefore, when

t is sufficiently large, yk is greater than the distance between the tth and

circles.

Thus, if d is sufficiently small, and the integer I is determined for which

1 1

the bean-shaped regions generated by small circles of

diameter rf, with the points of the given set as centres,

will not overlap with one another outside the Zth

circle. The area of such a bean-shaped region is

Thus, inserting the value of .v
fc ,

the area covered

by those bean-shaped regions which cover arcs on the

*th circle Q<k-^V is

Fig. 56.

and the area covered by all the bean-shaped regions outside the

circle is

Now, by (2), when d is sufficiently small, cU~ is as near unity as we please ;

thus the content of the small circles described divided by 2rf can be made as

near as we please to - 4- -
, by taking d sufficiently small. Hence it is clear

that, if the set of arcs has a definite linear content I, / cannot be less than

182
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x + -T The linear content /, therefore, if definite, is greater than the linear
4

itent with respect to the Jordan curve, and, if e<- the linear content Jcontent

is also greater than the linear content with respect to the Jordan curve.

This example shews that the value of the linear content of a

set of Jordan arcs depends not only on their length but on their lie.

175. Linear content of a countable cloned set of point*.
In the theory of content (plane, n-dimensioual content) we had

the theorem that a countable closed set of points has zero content,

a theorem which was followed by many important, consequences,
and which holds for the linear content of a closed countable set on

a rectifiable Jordan curve as defined with respect to that curve.

It is another anomaly of the theory of linear content that this

theorem is no longer true. The following is an example of a plane
countable closed set of points, having only one limiting point, and

whose linear content / is approximately 5^ while / is about 2f .

Ex. 2. A Plane Countable Closed Set of Positive Linear Content. Describe

round the origin as centre a countably infinite series of concentric circles

of radii 1, , $, ..., and place & points at equal distances round the

Pig. 57.

circumference of the th circle, for all positive integral values of
,
where k'

is defined as an integer by the inequality

and let the points be so placed that on a fixed straight line OX through
there is one point of the set on each of the circles (Fig. 67).
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These points together inth the origin form a countable closed tet whose

linear content is about f> A . Now, since (Fig. 58)

. fl-\/27r(*+l)\ 1 1
n ~-

the distance between consecutive points of the set on the th circle (represented

by the f -*t of these expressions)
is less t an the distance from

the th to the (+l)th circle

(represented by the last of these

expressions).
~ _.Iftherefore we describe, round

the points of the set as centres,

circles of diameter rf, these will, for the earlier values of k, be quite separate,

but will begin to overlap, in such a way as to form rings covering over the

circumferences of the successive circles, as soon as k reaches the value I,

denned by the following inequality :

(3).

Let OX be the fixed radius, C the point in which it meets the ki\\ circle

C' the point in which it meets the (-t-l)th circle, and <7j the point
on the th circle consecutive to C when we move clockwise on the circle.

Fig. 59.

Fig. 69 shews the part of the plane between the tth and (+l)th circles cut

out by the radii OJTand OC\.
The point in this part in which the circles of radius d and centres C and

Ci meet is T, and OT meets the circle of centre C' in 7", and the chord CCi
and the parallel chord (?C\ in B and B' respectively.

The circles of radius d and centres C and C' meet, if, and only if, d is

greater than CC\ that is, if

Also, since CO' is the minimum distance between a point of the set on the
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Hh ci?-cle and one on the (k+ l)th circle, no one of the circles whose centres

are on the tih circle can overlap with one of the circles whose centres are on

the (k+ l)th circle unless those with centres C and C" do so. Thus the rings

corresponding to values of k lying between / and (>-!), both inclusive, will

not overlap, where the integer TO is defined by the following inequality :

The circles whose centres are on the th circle (k^f) entirely cover over

a simple circular ring bounded by two circles of centre and passing through
the points of intersection of consecutive small circles whose centres are on

tue Ath circle ; one of these points is T in Fig. 59. Denoting the length of

the common chord of the small circles of centres C and '

in Fig. 69 by 4t,

BT-jfa
and tft

is the width of the simple circular ring in question.

On the (+l)th circle thero are at least k points of the set, and therefore

the distance apart of consecutive points of the set on the (/ + l)th circle is

less than it was on the th circle. Therefore

It follows that the simple circular rings round the tt\\ and (/r+l)th circles

will certainly overlap, provided k is not less than n
t
where the integer n is

defined by the following inequality :

Thus the whole area of the nil} circle (at least) is tiled over by the small

circles.

Now BT*+BC*=CT\

/I 7T\2

that is, $t
2+ f T sin p ) =eP,

Now, as d approaches the value zero, 1. m, n, l'
t m\ n' all approach infinity.

Moreover, since, by (1),

for all values of /;, we have, for I and P,

rf=0 *

the same equation holding for m and m', and for n and n'.

Again, since, by (3), j-j
sm T< i8 greater than 1 when k is /, and less than

rift K

I when k is (
-

1), we have

Lt
|Uin

~ =
l,

n f1
'

\ /2ir(i+l)\/ ^ \ 1
that is, Ltf-sm^-jf ? )(l i) IQ""*?
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whence, using (4), Lt W=l = Lt m*d ........ , ..................... (7).
il=0 (1=0

Similarly, using (5),

2 . TT ../' . n\ (1n(n+\)\( n \ 1
r , 1 ,,*

Lt
>
sin --= Lt I

- sin -
) (

-
,-

-
} {

. -,,) -.r-,- Lt --.-.= Lt -

,

d=0 7trf n' \r ir/.\ n /\+l/ V f #'

hence, by (6), each of these limits has the value 1/^/2 ; BO that

j2 .................................... '8).
<i=o

The content of the small circles is best calculated in three parts:

F(d)=L+M+N ................................. (9),

where L is the content of all those small circles whose centres lie outside the

Ith circle, M of those of the remaining circles whose centres lie outside the

7nth circle, and N is the content of the rest of the circles. Thus

therefore, by (1),

-f/2 k=l-\ -r/72 *=l-l

^~2n 2 (Jk+l)<L<^-2n 2 (A + 2),

that is,
-
(i- 1) (1+2)<L< (I-

whence, by (7), UU~ ..............................(10).

The ring formed by the small circles round the th circle, when k^l,'\ less

in area than the ring between the two circles with centre touching the ring

all round, that is, it is less than

Thus*, using (7), Lt -, ^ Lt rr 2 f=0 (11).
d=0 <* d=0 'k=l *

To calculate A\ we will first calculate the content of the parts of the plane
which are covered by the small circles between the circumferences of the

i-ih and (+l)th circles, where m ^ k<n.

By (1) the number of points of the set on the (+l)th circle is less than

k +8. Thus, if we replace the points of the set on the (#+l)th circle by k'

* Here we use a particular case of the general theorem

Jt=m-l 1 m-l
Lt 2

i=Ltlog^p.
Jt-m-l 1 faf

To prove this we have 2 =- = = ,

jt.j k l+x

where A = -
, and * has the values 0, -r , -r -

; thus, if i, m are made
i |> ft (f

infinite in the ratio 1 : t, we get us the limit of the summation

'- 1 dx
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points at equal distances, beginning on the fixed radius OX, we shall alter the

area covered between the ifrth and the (k+ l)th circles by at most 8(J-rf
2
) or

Thus, if we calculate the content bevween the th and (ir+l)th circles

on the supposition that there are only k' points of the set on the (/- + l)th

circle, and then sum from km to =n 1, we shall introduce an error in N
of at most 2n- (n

- m) d\ and therefore an error in the linear content of at

most Lt 2n (n-m) d=0. Thus it is allowable to calculate N in this manner.
(1=0

We have then f small uncovered areas between the th and ( + l)th circles,

all equal, and each bounded by four circular arcs, as in Fig. 59, where one of

these areas, TAfT'JP, is shaded. Now

i area TMT'M'

= quadrilateral BCC'B
1 -

triangles BCTt RCT, CC'M- sectors TCM, T'C'M

jg
-
/XjTiW sinpcosp-^rf

2

jsin

where k is BCT &nd ^ isMCC'; so that

008

Thus, neglecting small quantities which vanish in the limit,

}
.+ 1 cos ^t

Now, writing cos0= l/i
2
rf, we see that dt , ^-t ,

and <^t all have the same

limit. Thus, writing it for /' sin
/>{:'

cos ir/k', Zirk for /:', and < k for dt ,

and ^t, we introduce no error in the limit,

* Let RK denote the content of the circles whose centres lie on tbe A-th circle,

.and Rk the content of (k'-q) circles of diameter d placed evenly round the

circumference of the fcth circle. Then

TfP <P 2 TRk= k' ^ - 2f j (0
- sin e cos 0), cos 6-^ sin

^-,
,

Rk'=(k'-q)^--2(k'-q)^(e'-sme'coa0') t cos ^=~ sin rr^-

Therefore

whence 11^
- Sk

'
<. q .
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i , f ir \~ ir IT n id= Lt ~= -,
- --

s-
--

+ Zndt {0t
- sin <pk cos <

fc}
I

J

n-l
~j\

2 2rf
(</ t in

(f>k cos </>t) 1

=m J/

*=n-l
r 2
k=m

Lt - + 'r (
n* ~ %i2) d ~*>W (</>*

- si" 0* cos
z 4 fc- OT

Now sec $4 + 1 -isec <f)ic

thus, neglecting under the sign of summation mnall quantities whose sum

vanishes in the limit, we may write A (sec04 ) for Zicd, and sum with resect
to

<f>
from +0 to jrr -0: in the limit the wunmiation becomes the integral.

Now
- sin

<f>
cos <) d sec <=(< - sin < cos ^>) sec ^ -

J sec 0(1- cos

= (0
- sin cos 0) sec -

2} (1
- cos* 0) sec

Thus

whence

-

Now, by (10), Lt^ = ^.
<J=o *

Thus /=2frlog(x/2+ l)6-538 approximately.
It remains to prove that J is very nearly, if not exactly equal to /.

To prove this, consider that the regions of span d, however constructed

cannot possibly cover over the whole circumference of the Ith circle. Thus
we get an upper limit for the content of the small regions if we suppose the

whole area of a circle of radius (1/1 + d) to be tiled over, and the remaining
small regions to be non-overlapping. Since* the area of a region of span d in

at most irrf
2
,
we get as upper limit

fc=J /I \2 k=J

2 [In

<d \,+ kir~w-t-<*t

<rf {5-60901 3 + rf'}

<rf{/+ 0-071013 + rf"},
'

and d" being small quantities which vanish with d.

Thus $/$,/<$ 7+0-071013.

* See Appendix, Note oa p. 167.
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Ex. 3. A Plane Closed Countable Set of Infinite Linear Content. Take

a set of concentric circles of radii 1, $,,..., 1/,.... On each circle, of

radiu* uay I//*, place 2* points at equal distances, beginning on a fixed radius,

the name for all values of t. The points go constructed, together with the centre

of the circles, form a closed countable set of infinite linear content.

To prove this, consider that, since, for all values of k greater than 5,

2 . n 1

the distance between consecutive points of the set on the /rth circle (repre-

sented by the former of these expressions) is less than the least distance

between points of the set on the th and on the (+l)th circles (represented

by the .latter of the two expressions). Thus, if d be sufficiently small, small

circles of diameter rf, with the points of the set as centres, will be distinct

from one another for small values of k, and will first begin to overlap when

A I, where the integer / is defined by the following inequality :

1 . 7T d 1 . 7T

jsm^-^ ysm^-l ........................(1).

From the Ith to the wth circle, where n is defined by the inequality

^\ .............................. (2),

the small circles form rings round the circumference of each of the circles

of radii l/k, but the rings are distinct from one another ; as soon as we get to

the nth circle, however, the rings begin to overlap. It is only necessary
to consider the content N of these rings in order to prove the content to be

infinite.

The area of the ring round the Icih circle is greater than that of the ring
bounded by the two concentric circles through the points of intersection of

the small circles
;
that is, it is greater than

(3),

(4).

Let m be the integer defined by the following inequality ;

1 . tr i*^l TT
sin x=<rf<-r sin r- -. ........................(5);

TO 2m m~ 1 2"*" 1

then, since sin ^<irf<irf,m 2m

in is not less than I. Also, since

2n>
- 8 m-l

m(m+ l)

which, if m is sufficiently large, is greater than

4 TT 4
:>m-l 2"" 1 '

it follows that ^ . > d :m
so that m is less than n.
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By (4) and (5), for all values of k greater than in, t^ is greater than $<P ;

and therefore tk is greater than ^d. Thus, after /fc=m 1< the area of each of

the rings is, by (3), greater than irjkd. Thus

/v i i 1 -i i nl
Lt -3 ^ Lt -. ?. Zirtt x > Lt IT 2 7 ^ Lt n log

- -

4=0 d=o J * d=e w * <i=o

Now, by (2) and (5),

which can be made as large a we please by ufticiently decreasing d. Thus

Lt -% = co ;

<j=o

a fortiori the linear content of the whole closed countable set of points is

infinite.
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(1) p. 22, line* 3035 should read as follows :

"
immediately following

any number of the set ;
the same is true of the numbers of a set which is

dense in itself on the right only, or of a set which is dense in itself on the

left only." (Cp. p. 127, footnote }.)

(2) p. 38, footnote *, for xxn. read xx.

(3) pp. 5563.

The object of the present note is to shew that there is no foundation for

the doubt expressed on p. 530 of the Fortxchritte der Mathematik as to the

mode of treatment adopted in
" The Analysis of Sets of Points

"
(W. H. Young,

Quarterly Journal of Mathematics, 1902) for the theory of derived and deduced

sets, or adherences and coherences, without the use of Cantor's numbers. The

memoir quoted has to all intents and purposes been reproduced in the present

volume, and in the chapter on Cantor's numbeis reference is made to this

theory to elucidate the matter there treated of. A synopsis of the proof of

Theorem 25, Ch. IV (Theorem 7 of the memoir quoted) is appended, in

which the language used is such as to shew that the use of such terms as

"series of derived and deduced sets" (p. 27) and "progress a stage further"

(p. 28) does not in any way require a previous knowledge of the theory of

well-ordered sets or of Cantor's ordinal numbers for its comprehension or

iustification, and may, on the other hand, if it is desired, be entirely avoided.

In Cantor's treatment of the subject (Math. Ann. xxm. and Acta Math. VII.)

free use is made of Cantor's numbers, not only of the first and second, but

also of the third classes. It has been pointed out in the text that the

use of Cantor's numbers of the third class is not universally accepted as

legitimate. Under these circumstances, apart from the help which the theory
under discussion affords in the subsequent development of the theory of

Cantor's numbers, the fact that the existence and properties of the derived

and deduced sets, and of adherences and coherences, stand on an independent

basis, is one of too great importance to be left in doubt.

Synopsis of Proof -of Theorem 26, Ch. IV, p. 66.

(1) We define a limiting point, closed set, first derived set.

THEOBE & 1. A closed set E contains its first derived E'.

THEOREM 2. IfF is contained in G, F' is contained in ?'.

(The word " contained
"

is used to mean that a set is either identical with

another or is a proper component of it.)

THEOREM 3. A first derived set is a doxed set.

(2) We define deduction, as the process of taking all the common points
of a series of sets Elt Es , ... En ... for all positive integers n.
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THEOREM 4. (CANTOR'S THEOREM OF DEDUCT TON.) if ,, Ett ... are

each of them dosed sets, and E* vs always contained in En -\, then there it

always at leatt one point in the deduced set, and tke deduced set is a d<>wd set.

(3) We define a limiting point of countable degree, and the nucleus.

THKOBKM S. If F* is the nucleus of F, F F* is a countable set.

THEOREM 6. If F is a closed set and F' its first derived, F* it the

nucleus of F'.

THEOREM 7. If A\, F2 , ...all have t/ie same nucleus, the deduced Ml hat

the game nucleus.

(4) We define the set K(E)of sets of points as follows :

() K (E) contain* the first derived set E'
;

(b) K (E) contains the first derived F' of every one of its sets F',

(c) If K(E) contains each of the sets /\, jP2 , ... /*,... it contains

their deduced set F;

(d) If F be any set of points, then F belongs to K (E) if, and only if,

either we can assign a set Fn belonging to K(E), such that F is ite first

derived F '

or else we can assign a series of sets belonging to K(E)

. FI^ FII ^>-
such that F is their deduced set.

THEOREM 8. If F is a set ofK (E), Fisa closed set.

For if F= FO, Fisa. closed set by Theorem 3.

If F is the deduced set of F^ /j, ..., assume the theorem true for these

sets. Then if F
l

is contained in all the others, F is Identical with Fl and

therefore is a closed set. If this is not the case, let Ft be the first of the sets

not containing FI ,
and let /2 be the set of all the common points of Ft

and Fi. Then /2 contains F, and is easily shewn to be a closed set. By the

same argument, either F is identical with /8 ,
and is therefore closed, or we

determine the first of the sets not containing /2 ,
and take the common

component of this set and /2 as /3 . In this way either we shew that F is

closed, or we get a series F
l ,f2,f3l ... having F &a deduced set, and such that

each set is closed and contained in its predecessor ;
it then follows by

Cantor's Theorem of Deduction that F is closed. Thus if the Theorem is

true at all it is true always. It is true for E' by Theorem 3, therefore it-

is true always. Q.E.D.

THEOREM 9. If G is any set of K(E), O is contained in the first

derived set E'.

Suppose first that the theorem is true for C?
, then, since G is closed

and therefore contains (?
',
the theorem is true for (?'.

Nezt suppose that the theorem is true for O\ t
Os , ... then it is true for

their deduced set.

Thus if the theorem is true at all it is true always. But it is true for the

second derived set, and therefore it is true always.

COR. IfOis any set of K (E) except E', it is contained in E".

THEOREM 10. If F and G are any two sets of K(E), such that F is HOI

contained in (?, then O is contained in the first derived set F'.

First let G=0
',
and assume the theorem true for (?o.
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Now, if <Y were not contained in F, F would be contained in <7
' which

is G.
' But F is not contained in G, therefore O9 is contained irt F, Thun,

by Theorem 2, G
'

la contained in /", that is & is contained in /".

Next let G be deduced from (?,, G^, ..., and assume that the theorem

holds for these. Then since F is not contained in G, F is not contained

in {? for every value of n. Let. m be the first integer for which F is not

contained in (7r,. Then since the theorem is true for (7OT ,
Om is contained

in /*. But (r is contained in <?m ,
therefore 6? is contained in F'.

Thus, if the theorem is true at all it is true always, bat by Theorem 9,

Cor. it is true if G is the second derived set and therefore it is true always.

THEOREM 11. All the sets of K(E) have the game nucleus.

Assuming the theorem for
,
it follows for OJ, by Theorems 8 and 6.

Assuming the theorem true for G\ t
C?2 , ... it is true for their deduced set

by Theorems 8 and 7.

Also it is true for the derived sets of E
t
and therefore it is always true.

THEORKM 12. The sett ofK (E) are countable.

For let the points of E' - E* be arranged in countable order (Theorem 5)

and let them be PI, PS, ....

Let F be any set of K(E\ then, if E* b: the nucleus of E', it is also the

nucleus of F, and therefore contained in F. Similarly it is the nucleus of F'

(Theorem 11). Also by Theorem 9, both F and F' are contained in E'
;

therefore F-E* is contained in E' - E* and F-E* contains F' E*,
and therefore F-F', which is (F- E*)-(F' - E*\ is contained in E' - E*.
Let Pi be the first of the ioints of E' - E* in (F- F'\ then F determines the

index i, and we will now shew that no other set of K(E) determines the

same index.

If G be any set of K(E) such that F is not contained in t?, then, by
Theorem 10, G is contained in F', and therefore does not contain Pt : thu?

the index determined by G is different from t.

If G is a set of K (E) such that F is contained in (7, then F is contained

in 6" by Theorem 10 ; therefore P<, which is a point of F, is a point
of 6", and not of G - G'. Thus the index determined by (/ is different from t.

Thus there is a definite index t determined by and determining F. This

proves the theorem.

Since this note was composed we perceive that M. Lebesgue, who was

undoubtedly unacquainted with the Analysis of Sets of Points, has of kte

given a discussion of the matter, emphasizing this very point of vie-,v.

Lebesgue, li\e the present authors regards the theory of derivation and

deduction as the natural basis for the study of the transnnite numbers, not

vice versa. He also uses freely the notions of "
before

" and " after
"
(Lemons

mr I'Integration, 1904, pp. 131 seq.}. He proves from first principles that

no countable set of symbols can suffice to characterise the sets (including the

null-set, if it occurs, or repetitious of the nucleus) obtained by the processes
of derivation and deduction, and uses this theorem, in conjunction with an

argument which is tantamount to the use of the nucleus, to deduce the

theorem that a closed set is the sum of a countable set and a perfect set

(the latter or the former may of course in special cases be absent). He adds .

"On remarquera quo la demonstration ne suppose connus, ni la notion, ni

merae le mot de uombre transfini."
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(4) p. 55. Vivanti (Rand. d. Circ. Mat. di Palermo, 1898) pointa out

that the decomposition of a closed set into a perfect wt and a countable set

is unique. The proof depend* on the following Lemma :

The points of a perfect set S not belonging to one of it* closed components
Uform a set V whir,!- is dense in itself and of potency c.

For S= 17+ V.

Any point therefore of K, being a limiting point of S, since S w perfect,

but not of U, wince U is closed, is a limiting point of V. Hence V is dense in

itself.

Again, any point v of V, not belonging to the cloned set U, muni he

internal to one of the black intervals of U (footnote, p. 19 supra). Taking

any interval containing v and with both end-points internal to the name

black interval as v, the points of S belonging to thin closed interval form

a component of r, and it is a closed set (Theorem 7, p. 84 ntprd). By the

same argument as that used in proving that V is dense in itself, it follows

that this component is dense in itself and therefore perfect: the potency
of this component is therefore c (p. 50 supra), and therefore that of V is

also o. Q. E. D.

Now, if possible, let there be two decompositions of a closed set P,

where It and R' are countable, and S and S' perfect.

Then, since S is of potency c and R' is countable, $' cannot be a com-

ponent of /f, and therefore S and S' have in common a closed set (Theorem 7,

p. 84 supra). The remaining points of S, if any, are therefore, by the

Lemma, of potency c. But, being points of P but not of >S", they are points
of ti', and therefore countable, which is a contradiction. Thus S and <$" can

only bo identical and the decomposition is unique.

(5) p. 79. In footnote * for 1870 read 1875.

(6) p. 106, footnote. The reference should be Lebesgue, "Integral,

Longueur, Aire," Annali di Mat. 1902.

(7) p. 127. The distinction between "ordinal" and "actual" pointed
out in footnote t, is not simply one of measurement. Given any geometrical

form, it determines not only all the elements (points) in it, but also all

possible fundamental regions passing through it . If the elements are simply
ordered and we neglect the fundamental regions passing through the form,
we get the point of view of Cantor in Math. Ann. XLVI. and xux. Without

considering all possible fundamental regions passing through the form we
cannot discover whether an ordinal limiting point is, or is not, an actual

limiting point, whether the form, regarded as a set of points, is not merely

ordmally closed but actually closed, and so forth. The actual properties of

a form, regarded as a set of points, are those which are invariant for all

transformations of the fundamental region which leave the form itself un-

altered
;
the ordinal properties are .those which are invariant for certain

transformations of the form into itself without reference to points other than

those of the form itself. The distinction is therefore exactly parallel to that

between Cremona transformation of the plane (space) and birational trans-

formation of a curve.
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It is one of the tacit assumptions made in considering the geometrical

straight line, that, no matter what fundamental region passing through it be

taken as standard of reference, its points constitute a perfect set.

(8) p. 137. The definition given by Cantor of a well-ordered set is morr

cumbrous and is as follows :

A simply ordered set S is said to be well-ordered if it has the following

properties :

() there is a first element;

(b) if S' is any component of S, and if S possesses one or more elements

which come after all those of S', then there is an element of S such that

between it and the dements of S' there is no element of S.

The identity of this definition with that given in the text is however

easily proved by Cantor (Math. Ann. XLIX.).

(9) p. 141. It follows fr.om Theorem 6 that, if two well-ordered sets

fe'find F are similar, there is one, and only one, (1, 1^correspondence between

them by which the orders are maintained (Beppo Levi, loc. cit. p. 150).

Hence E and F are simply equivalent (see footnote
, p. 147, and below,

note 11). The question as to whether every set can be well-ordered is still

unsettled, no proof that this is so, or that it is not so, which has yet been

published, has been accepted as satisfactory. In reading Cantor's original

papers it must be borne in mind that Cantor was biassed by the opinion that

every set could be well-ordered.

(10) p. 147. The potency of tne set of all sets of points on the straight

line (if such a potency is recognised) must, by the definition of exponentiation

( 86, p. 152) be denoted by cf. This is also the potency of the set of all those

functions of a single real variable which assume only the values and 1, since

such a function is determined by, and determines, the aet of its zero points.

It is not difficult to prove that the same is the potency of all functions of

a single real variable, and therefore, by 96 and 97, of any countable number
of real variables (Borel, Lecons swr la Theorie des Fonctions, 1898, pp. 107 110).

Cantor's proof that this potency is greater than c is as follows : If possible

let there be a (1, ^-correspondence between the points .r of a straight line

and all sets of points. Then we can Characterise each set as Sx ,
where x is the

corresponding point. These sets are to include the null-set Sx , which con-

tains no point, and the whole straight line Sx ,
which contains every point.

Now Sx either contains the point #, or not. Let us form a set S as follows :

If Sx contains x, then S does not contain' x, but if Sx does not contain x, then

S does contain x. This law completely determines the set
,
which will

certainly contain the point #0, and certainly not contain the point .r1} and

will therefore be a proper component of the straight line other than the null-

set. By hypothesis there is a point y corresponding to S, so that S is the

same as St . But, by the law of formation of S, S and Sr are such that one

does, and one does not, contain the point y, so that S cannot be the same as

$v . Thus the hypothesis leads to an absurdity, whence we conclude that it

is iiot possible to set up a (1, ^-correspondence between all points of the ^straight

line and all sets ofpoints on the straight line.

Since, however, there are c sets of points each consisting of a single point

only, it follows from the definition of 85 that <? is greater than c. As
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Cantor himself pointed out (loc. cit. p. 147 supra) this argument can be

applied to shew that the set of all.sets of elements of any fundamental region

has a greater potency than that of the set of all those elements themselves ;

from this it follows that there is no maximum potency.
No objection has been found to this argument, except that, when applied

to " the set of everything
"

it seems" to lead to a contradiction which has not

yet been conclusively disposed of. Some references have been given in the

text (pp. 147, 156); since passing the proof-sheets for press some more

literature on the wubject has appeared (Schoenflies, Ja/tresber. d. d. Mathvgg.

1906, and several papers in Froc. L. M. S., Ser. II. Vol. iv. Part 1). It is not

proposed to enter here into this discussion, but only to speak of the doubts

which have, in consequence of this difficulty, been thrown on the propriety of

using the symbol c* at all. Borel (loc. cit.) descants on the extreme vagueness

of. our conception of the fundamental region S consisting of all sets of points,

and this has be'en adopted as a, war-cry by a certain party. It is, however, to

be pointed out that our knowledge of the fundamental region S has been

considerably enlarged since Borel wrote in 1898. He himself pointed out

that the set of all closed sets is of potency c (loc. cit. p. 50), a detailed proof of

this and some analogous theorems being given by Bernstein in his Dissertation

(1900) (cp. also Beppo Levi, loc. cit. p. 150 supra). A number of such

theorems with regard to components of 5 afe given on p. 164 mtpra.

Lel>esgue (lot: cit. note 6 supra) has shewn that all measurable sets, and

Young that all additive sets (" Open Sets and the Theory of Content," Proc.

L. M. A\, Ser. II. Vol. n. Part 1), have the same potency as S itself.

Parallel researches in the fundamental region S' of all functions of a real

variable have shewn that the potency of all functions of a real variable for

which an existence theorem is applicable is c (Baire, loc. cit. p. 70 supra,

pp. 70 - 79), and that, contrary to a statement made by Cantor, the potency of

.ill integrable functions is <? (Jourdain, J.f. reine it. angew. Math. 128, p. 179).

Under these circumstances the reproach of vagueness must be felt to have

been to a great extent removed from the sets S and S'. The objection that

we have no means of realising the most general set of points or function is

one which is equally applicable to the most general point or decimal fraction,

and, since it is not felt to be sufficiently weighty to prevent us using the

potency c, it cannot be admitted as condemning the potency <?.

(11) pp. 147 and 156. On simple and multiple equivalence, and the

mathematical law of arbitrary choice.

In Ch. II. the straight line, being considered as lying in a plane, the

geometry of the plane was used to shew that we can, by arbitrarily choosing
the points />, Q, on the straight line, G outside the line, and A on PC',

construct a scale of points on the straight line corresponding to .all the

rational and irrational numbers. Since the points P, Q, G and A can

each be chosen in c ways, the scale can be set up in this manner in c*=c

ways, no one of which is more likely to be chosen than another
;
thus we say

that the ncale is only determined voith multiplicity c.

On the other hand, if we do not use the geometry of the plane, but assume

as an axiom that the straight line is a -simply-ordered set of ordinal type 6

(8 78), and call its potency c, it is easily seen that we can choose out the

countable component dense everywhere in it, which is necessary for the setting

y. I
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up of H Scale, in c=ec ways, all equally likely, so thftt again the scale is only
determined with multiplicity c.

It follows that all proofs which depend on such a scale have the multi-

plicity c, and that proof* of theorems for linear sets which do not assume

such a scale, but assume the principle of arbitrary choice any countable

number of times, have precisely the same multiplicity. Thia is, for

instance, the case with the proofs of Theorem 2 on p. 18 and Theorem 1

on p. 175 ;
a similar proof may be given of the same theorem in space of any

countable number of dimensions.

In Math. Ann. XLVI. Cantor states that any transmute set whatever ha.*

u component of i>otency ,
that is J$ . If .AMs the set, and m its potency,

the proof of this theorem, depending essentially on a arbitrary choices, has

the multiplicity ". This theorem justifies the use of the expression "more

than countable." The same principle shews, with a multiplicity m** l

y

that, if m be not less than fa, M has a component of potency fa, and

generally that there is a first Aleph, say X which is not less than m, the

proof involving {$ arbitrary choices and being therefore of multiplicity m**.

Thia does not however prove that the set M can be well-ordered, nor does it

prove the identity of m, and fc$.

The mathematical principle of arbitrary choice here used is not to be

confused with the ordinary or human principle of arbitrary choice, or with

the throwing of dice. These are processes which, like all human affairs, are

essentially finite, indeed it would not be difficult to assign a finite number

which the number of such choices could never exceed. The mathematical

principle of arbitrary choice hoivever is axiomatic, and, in order to be of

universal application, is weighted with a variable multiplicity, depending on

the conditions of the problem, and which ought strictly to be explicitly

worked out. These facts may assist 'the student in studying the literature of

the subject, references to which will be found in the index.

Du Bois Reymond,in a much discussed passage t, points out the difficulties

connected with the conception of the most general decimal fraction, and

suggests that the principle of arbitrary choice, as such, cannot be assumed for

more than a finite number of choices. Here, however, he is referring to

human choice, which is unique, and he speaks of the impossibility of deter-

mining all the digits by successive throws of the dice. The mathematical

law of arbitrary choice would be quite useless for this purpose, since the

digits would be determined each time with a multiplicity 10, whereas in order

to actually set up a decimal fraction the digits must be determined uniquely.
Bernstein's diagrammatic representation of the simple order of countable

sets ( 73 supra) is such that to each countable set corresponds a set of c

order-diagrams, or binary order-fractions.

If \l be the potency of the set of all countable ordered sets, we have

therefore, since the use of binary fractions involves a multiplicity c,

nc^c (Mult, c) (1).

Cantor takes any binary fmotion /'and between the points and 1 he

places a set of type *<a + ,
or n single point, according as the first figure of

F is or I. Generally in the segment ("I""
1

, *!*)' he places a set of type
* + ,

or a single point* according as the nth dig't of F is or 1. He thus

obtains -a certain simply ordei-ed set Srt and he easily shews (Bernstein's

t Ally. Funkttonentheorie, p. 91.
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Dissertation, 6 of reprint in Math. Ann. LXI.), that two sets Sr and <5>'r ob-

tained from different fractions F and F', are different. Now Sf can be

chosen uniquely after setting up a scale, thus we have c countable simply
ordered sets. Hence

n^c (Mult, c) ................................. (2).

Therefore He ^ c (Mult, c),

whence, by (1), Tic = c (Mult, c) .................................(3).

In other words, it in possible to divide the continuum up into n *cts, ecwh

of potency c.

Since the potency of all sets of points is c*, it follows that

n ^.c (Mult. <f) .................................(4).

Hence, by (2) H = c (Mult, <?) ................. ............... (5).

Since foe ^ III? and ^ c, it follows from (3) and (5) that

K,c = c (Mult.*) ..............................(6),

N, < c (Mult. O .............................. (7).

It will be noticed that the commutative law for multiplication of potencies

ix also iveighted with a variable multiplicity.

(12) p. 163, line 16. After "unit square" add "and those of the unit

segment."

(13) p. 165. Peano's arithmetical representation of the square on the

straight line. The representation of the square on the straight line given
in $ 99 was originally given by Peano (Math. Ann. xxxvi. p. 157, 1890) in

arithmetic form, the geometrical discussion was first given by Hilbert (Math.

Ann. xxxvin. p. 459, 1891).

Using the ternary notation, let
''

T^O-tMi..., A^O-.W'V.., r-0ysy4ye...,

and let us define the operation k performed on
,
where a is 0, 1, or 2, by

the identity *a=2-a ....... ........................... (1).

Thus &a=k*a= k?a=<i\

and lm**Pa**]F**a }
...........................

'
''

The Peano correspondence between the points T of the segment (0, 1) and

. the points (A', F) of the unit square is then given arithmetically as follows :

The converse equations determining T when A' and Y are known can

then easily be written down, using (2).

It is evident from these two sets of equations that the correspondence

between the ternary fractions T and (X, Y} is always (1, 1). Thus the

correspondence between the points T and (A', F) is always (1, 1), provided

none of the corresponding ternary fractions terminate. It is easy, however,

to prove the identity of the pair of formally different fractions (A'j, TI) and

(A'2 ,
Y2), which correspond to a terminating 7\ and its equivalent fraction T3

which ends in & On the other hand the fractions 7*, and Ts ,
or T} , To. ^s> ?V

which Correspond to a point (A', K) with one or two terminating coordinates

actually are distinct

192
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X (and similarly F) is a continuous function of the 'variable T, having
nowhere a differential coefficient.

(14) p. 171. Take n circles, each of which lies entirely outside all the

others. Let P be a point of the region R outside all the circles, and S
the set of all the images of /', formed by inversions at all the circles, repeated
in any manner whatever. It may be shewn that this set of operations is the

same as all the single inversions at all the circles which are images of the

given circles : this set of circles we shall call the set of circular images ; it may
be constructed by inverting first each of the given circles with respect to the

others, and then inverting each of the circles so obtained with respect to one

another, and so on ad infinitum. Hence we.may shew that the images of the

region R form a set of non-overlapping regions, each bounded by n circles.

It now follows at once that the set S is. an isolated and therefore a countable

set, since in each image of R there is one and only one image of P. If m=\,
S consists of a single point, otherwise is a countably infinite set. The first

derived get S' of S consists of two points when w=2, these being the point

circles of the coaxal system determined by the two circles. If, however,

n > 2, .S" is a perfect set, dense nowhere in every region and on every curve, and,

when n= 3, or n > 3 and the n circles have an orthogonal circle, the set is of

the type constructed in Ex. 1, p. 171, Fig. 20.

The points of S' may be shewn, in fact, to be the point-circles of the set

of circular images, that is, each point L of S' is determined as the sole point

internal to an infinite number of the circular images lying one inside the

other, since the radii in this case decrease without limit. In each such

circular image there are at least two other circular images, and in each

circular image at least one point-circle ; it follows, therefore, that .*S" '.< dense

in itself. Again, S' is closed, being a first derived set, and therefore is perfect.

That it is dense nowhere in every region follows from the fact that the same is

true of .S". That it is dense nowhere on every curve follows from the fact that

there is no point of S' on any of the circumferences of the circular images
That the presence of an orthogonal circle reduces the set S' to the simpler
form of Fig. 20 follows, since by inversion orthogonal circles remain ortho-

gonal, and therefore the point-circles must all lie on the orthogonal circle of

the given n circles. These indications will suffice to enable the reader to

complete the proofs. This example was popularly sketched by Klein in his

Lectures on the Application of the Calculus to Geometry (1902, lithographed

by Teubner). It occurs naturally in Geometry and in the Theory of Potential,

and came into Klein's work on automorphic functions. (Fricke,
" Die Kreis-

bogenvierseite und das Princip der Syinmetrie," Math. A nn. XLIV. pp. 565

599. Klein, Letter to Poincare", Comptes Rendits, 1881. Poincare", Acta

Math, in, p. 78 seq. Klein -Fricke, Modulfunlctionen, Vol. I. p. 103. Klein-

Fricke, Automorphe Funktionen, Vol. I. p. 428 seq.}

(15) p. 187. The idea of span, as defined in 117, may be transferred

to any set by substituting the word "set" for "closed region." If the set is

closed, it then follows that there is always at least .one pair of points of the

set whose distance apart is the span s, or the span SL in any particular
direction

;
the proofs are similar in character to that of Theorem 2, 106,

p. 175.

The following theorem, of which use is made on p. 281, at once suggests
itself:
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The (outer) content of a set of span e is equal to, or lea than
j^ire

2
. In

particular, a circle of diameter e has t/te maximum area of any ytmdrable
region, of span e.

To prove this theorem consider that, if the distances of any two point* A
and B from a poi>>t P are each uot greater than e, the same is tnie of the

distance of P from any point of the stretch A B. Thus we do not alter the

span of n set, if we add to the set all the point* on all the stretches whose end-

points belong to the set. Further, we do not alter the span by closing the set.

Neither of these processes decreases the (outer) content. Thus if the theorem
can be proved for such a modified set, it follows generally.

Now these two processes of modification may be carried out in stages as

follows. Take any point 0, and any ray through as axis of x. On each

ordiuate the points of any given set G determine a definite smallest segment

containing all of them
;
the points of this segment, open at both ends, are

precisely all the points between any two points of Cf on the ordinate. These

points we adjoin to G and then close the set. Let this set be denoted by (/'.

Let the greatest and least values of // for points of G' corresponding to

any particular value of x be yt and y%. Then yl and -y.,, are both upper
semi-continuous functions of x ( 160, p. 252). If on each ordinate we shift

the closed segment, which is the section of G 1

, so that that segment is

bisected, the amount of shifting will be $ (yt +y%), which is a summable

function (footnote t, p.. 260), while the length of th segment is $(y\-ys),
which is an upper semi-continuous function. Hence we can shew that,

after shifting, the set is still closed. For if we have any sequence of points

of the new set (af^ y<')), having (x, y) as limiting point,

so that * Lt [- {yi
= 00

and therefore, (y\ -y^ being an upper semi-continuous function,

This last inequality shews that the limiting point (x, y) lies inside the

segment which was the section of G'
t
and therefore belongs to 6" after

shifting. Thus G' remaining a closed set we can. apply the corollary on

p. 259, and assert that the content of G' has been unaffected by the shifting.

It remains to shew that the span of the shifted set is not greater

For since

and -i(
the distance between the points (x, y) and (of, /) of the shifted set is not

creator than

Thus the span of the shifted set
1

is less than, or equal to e; whence it

follows that the whole shifted set lies inside the common part of two circles

of radius e, whose centres lie at a distance \e from on the ray through

perpendicular to that chosen as axzs of or; this latter is now an axis of

symmetry of the set.
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If we repeat this process, choosing now the ray perpendicular to the first

as new axis of symmetry, and then choosing each of the two bisectors of the

angles between the two axes of symmetry, and so on, the set, which becomes

more and more symmetrical without increasing its span or altering its

content, always lies inside the common part of the circles of radius e, whose

centres lie on the rays through O perpendicular to the axes of symmetry and

at a distance -ie from 0.

Now this common part approaches as limit the circular region of radius

with as centre. Thus, choosing k arbitrarily, we can determine k so

that, after k shiftings, our set lies inside a region whose area is less than

IJT^+A. This proves that the content of the set is not greater than J*re
2
,'

which, since the area of a circle of span e is \ ire*, proves the theorem.

(16) p. 204. Jordan uses parfait tor closed. Borel uses parfa.it some-

times in this sense, sometimes in the sense of perfect, differentiating the

former as "
relativernent parfait" (Jordan), and the latter as "absolument

parfa.it" (Cantor) (Le$oii8 sur la Thdorie des Fonctiotti, pp. 35, 36.) Lebesgue
uaes parfait in Cantor's sense, and uses fermtf for closed.

(17) p. 206. Let ABC be one of the triangles of span < e
t

. Produce

the sides and take A g ,
B

,
and C respectively in the angles vertically opposite

to SAC, ABC, and BCA. Then the triangle A B C will contain the triangle

ABC. In order that the span of A B C should be less than e4 ,
we only have

to choose A inside the common part of the circular domains with centres B
and C and radius eit and similarly restrict the choices of B and C to lie

within certain domains. Finally, in order to insure that the triangle A B Ct

should have none of the inconveniences specified in the text, we only have to

avoid choosing for A one of the |37i(3n-l) intersections of sides of the

n triangles, then choose B so as not to lie on any of the lines joining- A to

any of those points, and finally choose V so as not to lie on any of the lines

joining either A or B to any of those points.

(18) p. 226, lines 17 and 21. If >3, Ji^ is not one of the regions
which necessarily overlap with Ri+ l ;

hence any common parts of /^_j and
R + 1 contain no points of the Jordan curve. Thus this case is the same as

that touched on in lines 14 20. The reduction alluded to in line 17 is

easily effected; it is not given in full in the text, since to do so would break

the argument. If U
it * be the common part of

/(,
and Rk containing no point

of the Jordan curve, we only have to interchange those parts of the boundaries

of Rj and R which bound U
it t ,

and then round off the common boundary
points by small circles of radius d, where 2d is the minimum distance of U

itl
.

from the Jordan curve

(19) p. 227, line 3. The polygon n is simple (p. 179, footnote t), since Ct

and Bi can be joined by a simple i>olygonal line, lying in ltt and only inter-

secting the remaining regions Rj (j^i) at Bt and t\. Thus we may speak of

the inside and outside of n (lines 14. 18, 20).
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pp. 135 140 1.

"
Sugli aggregati perfetti," 1899. Rend, del circ. mat. di Palermo, XIII.

pp. 8688.
" Lezioni sulla teoria delle funzioni analitiche," 1899. Reggio Calabria,

Massara (lithogr.).

"Teoria delle funzioni analitiche," 1901. Milano, Manuali Hoepli,
312 313. German translation by A. Gutzrner, 1906. Leipzig, Teubner.

VOLPI, R., and ZOCCOLI, E. G. " Di un' applicazioue della teoria dei gruppi
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Deduction, 25, 26, 164, 234, 285

Degree, of limiting point, 53, 235, 237,
285

Dense, everywhere, 22, 23, 29, 45, 127,

130, 132, 171, 231, 2fi9, 290, 293,
in itself, 17, 29, 44, 45, 52, 54 ff., 61,
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Fork, 221, 223

Form, 165, 177

Fraction, 33 ; binary, 21, 48, 51, 64,

128 ff., 131, 184, 155, 163, 236, 290
;

continued, 3; decimal, 3, 289; order,
125 ff., 150; ternary, 21, 51, 64, 79,

128, 131, 291

Function, 251, 289 ; associated upper
and lower limiting, 253 ff .

; auto-

morphic, 292 ; continuous, 222, 230,

267, 293; discontinuous, 134, 230;
integrable, 255, 260, 268

; monotone,
255, 271 ; rational, 5, 6 ; semi-con-

tinuous, 252, 261, 293 ; with limited

variation, 266
; summable, 260

Fundamental, region, 135, 136, 145 ff.,

161, 162, 195, 201, 251, 287, 289;

segment, 22, 34, 112, 138 ff.; set, 22,

135, 154

Generate, 177, 180, 181, 182

Geometry, 292

Graphical, 124

Greater, 4, 150
Greatest common factor, 69

Harmonic, 9
Heine-Borel Theorem, 41, 80, 83, 134,

177, 258 ; extended, 202 ; generalised,

41, 105

Hyperplane, 256, 263

Identical, 122

Image, 292
Increase indefinitely, 86

Indices, 35, 163

Indistinguishable, 76, 121, 147

Induction, 124

Infinite, 17, 35 ; content, 118
;
count-

ably, 35, 145
; number, 2, 6 ; length,

264, 267; region, 195

Infinity; 5, 6, 10, 32, 278

Inherence, total, 61

Inner, addition .theorem, 97; content,
96 ff.

; limiting, see Set ; rim, 208 ff.

Inside, 178

Integer, even, odd, 36; positive, 33,
145

Integrable, 268

Integral, calculus, 259 ; definite, 259 ;

generalised, or Lcbcsguc, 260 ff.
;

lower, 251 ; points, 11 ; upper, 250

Integration, 250

Interior, 169
Internal points, 15, 17, 30, 41, 63, 166,

178, 181, 188 ff., 197, 199, 201 ff.

Interval, 14, 17, 38, 63, 149; black,
19 ff., 48, 62, 83, 112, 133, 151,

287; free, 46; limiting, 30 ff., 190;
limits of, 29 ff. ; non-overlapping, 38,

49, 81 ; normal, 163 ; ovurlupping,

19, 38, 63, 81
; set of, 77, 104, 179,

187, 269

Intransitive, 180

Invariant, 134, 287

Inverse, 5

Inversion, 292

Involution, 133

Irrational, number, 33, 50, 119 ; point,

13, 16, 18

Isolated, end-point, 41, 42 ; point, 17,

24, 41, 42, 57 ff., 170; set, 17, 24, 41,

42, 57 ff., 170

Join, 178, 183, 209

Last, 27, 122, 138

Law, 37, 124, 170, 288, 289 ; associative,

37, 158 ; commutative, 37, 158
;
dis-

tributive, 37
Least common multiple, 69

Lemniscate, 205

Length, 15, 64, 76, 264 ff., 267, 273,

276; calculation of, 267 ff.

Less, 4, 150

Lie, 27C

Limit, 6, 53, 168, 169, 271 ; of intervals,

29; lower, 31, 81, 83, 175, 268;
ordinal, 134 ; on both MSB, 17, 21,

46 ;
on One side, 18, 21

; upper, 31,

187, 192, 265, 268, 281

Limiting, element, 127 ; function, 253 ff. ;

interval, 30 ff., 190; number, 155;

point, 16 ff., 24, 49, 51, 52, 58, 63,

132, 134, 170, 178, 183, 219, 221, 267,
284 ; point, degree of, 53 ; point,
order of, 23, 27, 58 ; point of limiting

points, 27. (See ahn Set)

Line, straight, 9ff., 47, 94 ff., 177,

288, 289

Linear, 16, 20, 53; content, 262 ff.,

271 ff. ; continuum, 46 ; element, 177

Locus, 222

Logical, 146, 150

Logically determinate, 147

Magnitude, 3, 4, 15, 38 ; order of, 1

Manifold, 162

Mathematical, 124, 146, 289

Maximum, 252, 293; segment, 45,

130
Measurable set, 105, 117, 118, 260 ff.

Measure of the content, nee Content,

inner and outer

Measurement, 14, 33, 161

Metrical, 76

Minimum, 251 ; distance, 175, 204, 218,

277, 293
Mixed order, 122, 143

Multiple, equivalence, 289 ; poiut, 222

Multiplicand, 160

Multiplication, 37, 151 ; ordinal, 154,
159

Multiplicity, 147, 289 ff.

Multiply equivalent, 147 150
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Mutual lelatious, 121

Natural order, 1, 62, 125, 166

Nature of the straight line, 11 (see

al&o Appendix (7), p. 287)

Neighbourhood, 201, 212, 220

Next, 155

Node, 165, 169

Non-overlapping, domains, 203; inter-

vals, 19, 38. 63, 81 ; intervals, regions,
Cantor's Theorem of, 48, 199 ; limits

of, 31

Normal, intervals, 63; regions, 235

Nucleus, 54, 56, 64, 85, 135, 136, 138,

141, 164, 236, 249, 285, 286

Null-class, null-set, 145, 164, 288

Number, 1, 3, 150; algebraic, 6, 8, 44,

146; binary, 25; Cantor's, 25, 37,
145 ft., 284; cardinal, 1, 33, 145 ff.,

153, 157; fractional, 1; infinite, 1,

2, 6; infinity, 5, 6; inverse, 5; irra-

tional, 1, 3, 33, 50; limiting, 155;

Liouville, 8, 50; natural, 1, 34, 122;

negative, 1, 4; order of, 1, 62, 124;

ordinal, 25, 153 ft., 269, 284; prime,
157 ; ternary, 20, 51 ;

transcenden-

tal, 6, 8, 146; transfinite, 156, 286

Numerical, determination, 162; repre-

sentation, 124; segment, 15

Open, interval or segment, 15, 17, 293 ;

region, 178, 180; set, 19, 52, 63, 94,

171, 270; set, content of, 87

Order, 1, 9, 23, 44, 48, 49, 121, 161,

165, 244; close, 127; diagram, 125,

155; fraction, 125 ff., 150; of a limiting

point, 23, 27; of magnitude, 1; mixed,
122, 143; multiple, 143; natural, 1,

62, 125, 166; of the natural numbers,
122; progressive, 123; pure, 122,

143; simple, 122, 162

Ordered, component, 121; set, 121;

simply, 291

Ordinal, 287 ; addition, 154, 137 ; limiting

element, 134, 287 ; multiplication,

154, 159; number, 25, 153 ft., 284;
transfinite, 156; type, 121, 125, 134,
153 ; type, closed, 134 ; type, finite, 122

Ordinary, boundary point, 198 ;
external

point, 178, 181
; inner or outer limit-

ing set, see Set

Ordinate, 261, 262, 293

Orthogonal circle, 292

Oscillate, 271

Oscillation, 32, 251, 274
Outer content, 103ff., 261, 293; limiting

set, see Set ; rim, 208 ft.

Outside, 182

Overlap, 19, 38, 201

Overlapping elements, 177; intervals,

38, 81; triangles, 180

Parallel, 24, 188, 189, 193, 259, 272

Parallelepiped, 188, 251

Parameter, 268, 269

Part, 76, 82, 208, 225 ff.

Path, 179, 208, 267

Pattern, 230ft.

Perfect, 20, 29, 43,. 171, 181, 234, 288;
connected set, 205 ; ordinally, 134 ;

set, 21, 22, 46, 60, 52, 55, 76, 193,

287, 292; set, nowhere dense, 20

(Ex. 2), 197, 244

Perpendicular, 188, 189, 193

Plane, 16 Iff., 169, 288; content, 173ft.,

238ft.

Point, 9 ft., 289, 291 ; algebraic, 233; of

arrest, 269; base, or fixed, 168; boun-

dary, 178, 181, 185, 189, 239; boun-

dary, external, 178, 181; boundary,
ordinary, 198, 200; of condensation,
31; degree of, 53, 235; of division,

166; edge, 178, 181, 182, 185; end,
15, 17, 19, 41, 42, 46, 179, 218, 220 ft.,

222, 287 ; external, 15, 19, 41, 46, 178,

181; external limiting, 197; harmonic,
12ft.; integral, 11; internal, 15, 41,

166, 178, 181, 188 ff., 197, 199, 201;
inverse integral, 11 : irrational, 13, 16,

18; isolated, 17, 24, 41, 42, 57, 170;
limiting, 16 ft., 24, 49, 51, 52, 58,

63, 132, 134, 167, 170, 178, 183,

184, 219, 221
; limiting, of limiting

points, 27; limiting, ordinal, 134, 221,

267, 284, 287; middle, 179; multiple,

222; order of, 23; ordinary, of a

curve, 221; of a plane, 161, 162;
primary, secondary, 45, 230ft.; ra-

tional, 12, 18, 34, 68, 171, 233; rim,

186; semi-external, 30, 39, 41, 198,

200; super-boundary, 198, 200; zero,
288

Pointwise discontinuous, 252
Polar coordinates, 161

Polygon, 177, 265; simple, 179, 187,

195, 205, 227, 294

Polygonal, line, 165, 186; path, simple,
179, 208 ft., 228, 264, 267; region,
206ft.

Position, 162

Positive, 4; content, 89 ft., 98, 120, 173,
174, 244 ft., 276

Postulate, 124, 195

Potency, 33, 121, 147, 162, 233 fit., 288;
of derived and deduced sets, 137; a,

36, 63, 76, 145, 171, 290; c, 46, 63,

70, 71, 80, 85, 89, 90, 93, 94, 97, 132,

145, 149, 164, 234 ff., 248ft., 287,

290; greater, less, 150

Potential, 292

Power, 37, 152

Preceding, 22, 27

Predecessor, 285

Primitive, triangles, tetrahcdra, (n + 1)-

hedra, 179

Principal element, 134

Product. 5, 37, 151

Progress, 27, 284
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Progression, 128, 124, 134, 238

Progressive order, 123

Project, 176

Projective scale, 9ff.

Proper component, 16, 149, 150, 284, 288
Pure order, 122, 143

Quadrable, 242, 244, 293

Quotient, 5

Radius, 10(5, 190; vector, 161
Rank of an algebraic number, 6, 44

Ratio, 33

Rational, function, 5, 6; intervals, 40,

41; number, 1, 8, 127; point, 12, 18,

21, 44, 68, 171, 179

Rectangle, 188, 189, 193

Reotifiable, 266, 273, 274

Reduce, 56

Region, 162, 171, 177 ff., 180, 192, 219,
224 ff.; area of, 242 ; closed, 178, 187,

188, 192; content of, 239 ff., doubly
connected, 227; finite, 195; funda-

mental, 135, 136, 145 ff., 161, 162,

201, 251, 287, 289 ; infinite, 195 ; modi-

fied, 210 ff.
; normal, 235 ; quadrable,

242, 244, 293; simple polygonal,
206ff.; simply connected, 207, 212,

227, 244

Regression, 123, 124, 134

Relation, mutual, 121

Representation, of numbers on the

straight line, 9ff.; continuous, 164 ff.,

216, 244, 291; graphical, numerical,
124, 290

Rim, 186, 197, 207 ff.; outer, inner,
208 ff.-, 228, 243

Ring, 172, 192, 278 ff.

Roulette, 274

Scale, 9ff., 289 ff.

Section, 170, 174, 188, 256 ff., 259, 261 ff.

Segment, 14, 17, 19, 46, 166, 177 ;
fun-

damental, 22, 34, 112, 139 ff.; maxi-

mum, 45 ; unit, 165, 291

Semi-continuous, 252, 261, 293

Semi-external, 30, 39, 41, 198

Separate, 212

Sequence, 1, 2, 16 ff., 33, 34, 46, 124,

132, 156, 158, 170, 175; constituents

of, 2; equal, 2ff.; order of, 123;

partial, 4 ; of points, 16

Series, 2, 27 ff. (see Appendix (3), p. 284),

63; discrete, 124

Set, 16, 33, 145 ff., 289; of arcs, 221,

229, 269, 274 ff.; closed, 15, 17, 19,

26, 27, 52, 65, 66, 76, 97, 103, 116,

118, 127, 171, 178, 180, 187, 188, 192,

195 ff., 201, 203, 207, 211, 218, 219,

222, 229, 252, 284; complementary,
71, 77, 261; component, 23; con-

nected, 195, 204 ff., 207, 219; con-

tinuous, 162; countable, 34, 42, 52,

55, 56, 64, 65, 70, 118, 136, 156, 164,

179, 183, 199, 233, 237; countable

closed, 44, 132, 186, 276; countably
infinite, 35, 145 ; of closed sets, 135,
164; of countable sets, 164; deduced,
27, 28, 55 ff., 66, 85, 135, 141, 154,
156, 176, 284 u.; derived, 28, 27, 28,
42, 55 ff., 66, 85, 135, 141, 154, 15(i,

284 ff. ; of domains, content of, 241
finite, 18, 34, 124, 143, 158, 170;
fundamental, 22; H. J. 8. Smith's,
lllff.; of intervals, 77, 164, 179, 187,
269; isolated, 17,57, 70, 233; limiting,

generalised inner and outer, 69, 96, 99,
104, 110,117, 118; limiting, ordinary
inner, 63ff.,89, 108, 117, 118, 234 ff.,

261 ; limiting, ordinary outer, 70, 99,

108, 110, 117, 118, 164; of lines, 257;
measurable, 105, 118, 260 ff.; open, 19,

52, 63, 94> 171, 270; ordered, 121;
perfect, 20 ff., 29, 43, 46, 48, 50, 52,

55, 76, 127, 171, 181, 193, 197, 205,

212, 234, 244, 287, 288, 292; plane,
121, 170; of regions, 192 ff., 197 ff.,

241; transfinite, 36, 142, 290; of tri-

angles, 180, 239; typical ternary (of
zero content), 20, 48, 60, 171; typical

ternary (of positive content), 78, 120,

173; unclosed, 19, 21 (gee Open); well-

defined, 145; well-ordered, 137 ff.,

153 ff., 284, 288

Shift, 52, 293

Similar, 121, 133, 153, 288

Simple, equivalence, 289; order, 122,

162; polygon, 179, 187, 195, 227;

polygonal path, or line, 179, 206 ff.,

228 ff., 267; polygonal region, 206 ff.

Simply, connected, 208, 212, 227, 244;

equivalent, 147, 150, 288, 289; ordered,
291

Size, 33

Space, 161, 163, 201, 288; filling-curve,
169

Span, 187 ff., 193, 201, 211, 219, 236,

272, 273, 292 ff.

Sphere, 170, 188, 196 ; one-dimensional,
88

Square, 165 ff., 183, 188, 201, 202, 243 ff.,

248, 291

Standard, 121

Straight line, 9ff., 47, 94, 177, 288, 289

Stretch, or segment of a straight line,

165, 177 ff., 189, 207

Strip, 187, 189

Subtract, 74

Subtraction, 157

Sum, 4, 37, 69, 81, 97, 100, 106, 117,

118, 196, 269
Summable function, 260, 293

Summation, lower, upper, 257 ff., 260

footnote, 261

Super-boundary, 198

Synopsis, 284

Ternary, fraction, 21, 51, 64, 79, 128
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181, 291; number, 20, 51; set, Can-

tor's, 20, 48, 60, 171 ; set, H. J. S.

Smith's, 11 Iff.; set, of positive content,

78, 120, 178

Theorem, Addition, 81, 84, 101, 107, 116,

241, 242 ; Cantor's, of Deduction, 26,

89, 93, 194, 228, 285; Cantor'a, of

non-overlapping intervals, or regions,

38, 47, 76, 177, 199; Cantor-Bcrnstein-

Bchrdder, 147, 236 ; extended Heine-

Borel, 202, 218, 233; generalised

Heine-Borel, 41, 105; Heine-Borel,

41, 80, 134, 177, 278; Heine-Borel,
for the plane, etc., 203 ; of the nucleus,
236; Scheeffer's, 52, 120; Weierstrass's,

191, 192
Total inherence, 61

Transcendental, 6, 8, 146

Transfinite, T4, 142, 286, 290 ; ordinals,
156

Transformation, 287; birational, 288;
Cremona, 288; (1, 1), 127

Transitive, 180, 183, 184

Translate, 52

Tree, 62

Trellis, 124, 144

Triangle, 177 ff., 203; generating,
180 ff. ; primitive, 179 ff.

Type, closed ordinal, 134; content of.

239; ordinal, 121 ff., 153 ff.

Ultimate coherence, 61, 67

Unbounded, 169

Unclosed, 19, 21 (see Open)
Uniform continuity, 218

Unit, 33; segment, 165, 291; square,
163, 165, 291

Upper limit, 31, 83, 265

Variable, 255, 288

Variation, limited, 266; limits of, 272

Variety, 162

Vertex, 179, 183, 207, 265, 267
Volume, 259

Wedge, 35, 124, 163

Well-defined, 145

Well-ordered, 137 ff., 153 ff., 284, 288

Wipe out, 210 ff.

Zero, content, 20 (Ex. 2), 98, 102, 103,

111, 114, 118, 260, 267; points, 288
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